Arithmetic Progressions of Squares and Cubes over Quadratic Fields

Stephen Mussmann, Ronald Archer, Benny Martinez, Lirong Yuan, Han Liu
Department of Mathematics
Purdue University

July 31, 2012

Background

Abstract

- In 1640, Pierre de Fermat sent a letter to Bernard Frenicle de Bessy claiming that there are no four or more rational squares in a nontrivial arithmetic progression.
- Each 4-term arithmetic progression of perfect squares corresponds to a rational point ($\mathrm{x}: \mathrm{y}: \mathrm{z}$) on the elliptical curve

$$
E: y^{2} z=x^{3}+5 x^{2} z+4 x z^{2}
$$

and one shows that $E(\mathbb{Q}) \simeq Z_{2} \times Z_{4}$ consists of finitely many rational points.

Background

Abstract

- Similar arithmetic progressions have also been studied. There are only finitely many 3-term arithmetic progressions whose terms are perfect cubes: $\{-1,01\}$ for example.
- Each 3-term arithmetic progressions of perfect cubes corresponds to a rational point ($x: y: z$) on the elliptic curve

$$
E: y^{2} z=x^{3}-27 z^{3}
$$

and one shows that $E(\mathbb{Q}) \simeq Z_{2}$ consist of finitely many rational points

Overview

Intro

- An m-term arithmetic progression is a collection of ration numbers $n_{1}, n_{2}, ., n_{m}$ such that there is a common difference $d=n_{i+1}-n_{i}$.
- Examples of non-constant 3 - term arithmetic progressions are $\{-1,0,1\}$ and $\{1,25,49\}$, where the common differences are $d=1$ and $d=24$, respectively.
- The latter example fits into a large family. There are infinitely many 3-term arithmetic progressions whose terms are perfect squares: consider for example the set

$$
\left\{\left(x^{2}-2 x z-z^{2}\right)^{2},\left(x^{2}+z^{2}\right)^{2},\left(x^{2}+2 x z-z^{2}\right)^{2}\right\}
$$

for any rational numbers x and z.

Overview

Intro

- Both of these results can be generalized by working with larger fields. A 2009 paper in the ArXiv by Enrique Gonzalez-Jimenez and Jorn Steuding entitles "Arithmetic progressions of four squares over quadratic fields" discussed a slight generalization by looking at four squares in an arithmetic progression over quadratic extensions of the rational numbers.
- For example, one can use these results to construct the arithmetic progression

$$
\left\{(9-5 \sqrt{6})^{2},(15-\sqrt{6})^{2},(15+\sqrt{6})^{2},(9+5 \sqrt{6})^{2}\right\}
$$

Overview

Intro

- Similarly, a 2010 paper by Enrique Gonzalez-Jimenez entitled "Three cubes in arithmetic progression over quadratic fields" discussed a slight generalization by looking at three cubes in an arithmetic progression over the same quadratic extensions.
- As an example, one can use these results to construct the arithmetic progression.

$$
\left\{(4-21 \sqrt{2})^{3}, 22^{3},(4+21 \sqrt{2})^{3}\right\}
$$

Motivation

Summary

In this project, we seek to give explicit examples of four squares in arithmetic progressions as well as three cubes in arithmetic progression, and recast many ideas by performing a complete 2-descent of quadratic twists of certain elliptic curves. This will extend a 2010 paper Alexander Diaz, Zachary Flores, and Markus Vasquez entitled "Arithmetic Progression over Quadratic Fields"

Definition

Proposition

Consider the curve

$$
E: y^{2}+a_{1} x y+a_{3} y=x^{3}+a_{2} x^{2}+a_{4} x+a_{6}
$$

Using a substitution, we find a curve in the form $Y^{2}=X^{3}+A X+B$. This is a nonsingular curve if and only if $4 A^{3}+27 B^{2} \neq 0$.

A nonsingular curve as in the proposition above is called an elliptic curve. They can be defined over any field K. K-rational points are points on the curve whose coordinates belong to K .

Remark

Elliptic curves are helpful because we can use it to generate solutions of diophantine equations, pythagorean triplets, heron triangles, and so on.

Chord-Tangent Method

- The idea behind considering non singular curves is we can draw lines - including tangent lines - to generate several points from a few known ones.
- If P and Q are K-rational points on an elliptic curve E, draw a line through them. If $P=Q$, then draw the line tangent to the curve at P; this line is well-defined because the gradient exists at all points on E.
- This line will intersect the curve as a third K-rational point, say $\mathrm{P}^{*} \mathrm{Q}$. This process is known as the chord-tangent method.

Theorem

Denote K as either \mathbb{Q}, \mathbb{R}, or \mathbb{C}. Consider the elliptic curve

$$
E: y^{2}+a_{1} x y+a_{3} y=x^{3}+a_{2} x^{2}+a_{4} x+a_{6}
$$

where $a_{i} \in K$. Let * denote the composition law which takes two K-rational points P and Q and computes the point of intersection $P^{*} Q$ of the projective curve E and the line through P and Q. Define the composition law $P \oplus Q=(P * Q) * O$. This turns $(E(K), \oplus)$ into an abelian group.

Theorem (L.J.Mordell, 1922)

Let E be an elliptic curve defined over \mathbb{Q}, then $E(\mathbb{Q})$ is a finitely generated abelian group. In particular,

$$
E(\mathbb{Q}) \simeq E(\mathbb{Q})_{\text {tors }} \times \mathbb{Z}^{r}
$$

for some nonnegative integer r.

Squares in Arithmetic Progressions

Theorem

Denote

$$
\begin{gathered}
x_{0}(24): y^{2}=x^{3}+5 x^{2}+4 x \\
X_{0}^{(D)}(24): y^{2}=x^{3}+5 D x^{2}+4 D^{2} x
\end{gathered}
$$

Then there exists a nonconstant / nontrivial progression of four squares over $\mathbb{Q}(\sqrt{D})$, if and only if rank $X_{0}^{(D)}(24)(\mathbb{Q})>0$.

An Arithmetic Progression to a Point

Given a 4-term arithmetic progression of four squares ($n_{1}, n_{2}, n_{3}, n_{4}$), let a rational point $(x: y: z)$ satisfy the following:

$$
\begin{gathered}
x=2\left(\sqrt{n_{1}}-3 \sqrt{n_{2}}-3 \sqrt{n_{3}}+\sqrt{n_{4}}\right) \\
y=6\left(\sqrt{n_{1}}-\sqrt{n_{2}}+\sqrt{n_{3}}-\sqrt{n_{4}}\right) \\
z=\sqrt{n_{1}}+3 \sqrt{n_{2}}+3 \sqrt{n_{3}}+\sqrt{n_{4}}
\end{gathered}
$$

This constitutes a point on the curve $y^{2} z=x^{3}+5 x^{2} z+4 x z^{2}$
Rational Points on $y^{2} z=x^{3}+5 x^{2} z+4 x z^{2}$

$\left(\sqrt{n_{1}}: \sqrt{n_{2}}: \sqrt{n_{3}}: \sqrt{n_{4}}\right)$	$(x: y: z)$
$(-1:-1:+1:+1)$	$(0: 1: 0)$
$(-1:+1:-1:+1)$	$(0: 0: 1)$
$(-1:-1:-1:+1)$	$(-2:+2: 1)$
$(-1:+1:+1:+1)$	$(-2:-2: 1)$
$(+1:+1:+1:+1)$	$(-1: 0: 1)$
$(+1:-1:-1:+1)$	$(-4: 0: 1)$
$(+1:+1:-1:+1)$	$(2:+6: 1)$
$(+1:-1:+1:+1)$	$(2:-6: 1)$

From this we can conclude that there are no nontrivial arithmetic progressions of four rational squares over \mathbb{Q}. Additionally we observe that $X_{0}(24) \cong Z_{2} \times Z_{4}$ as an abelian group.

A Point to an Arithmetic Progression

Given a nonzero rational number D, we say that $X_{0}^{(D)}(24): y^{2} z=x^{3}+5 D x^{2} z+4 D^{2} x z^{2}$ has a nontrivial rational point ($x: y: z$). We then have an arithmetic progression of four-squares $\left(n_{1}, n_{2}, n_{3}, n_{4}\right)$ over $\mathbb{Q}(\sqrt{D})$ given by the following:

$$
\begin{gathered}
n_{1}=(3 D x(x+2 D z)+\sqrt{D} y(x-2 D z))^{2} \\
n_{2}=(D x(x-2 D z)+\sqrt{D y}(x+2 D z))^{2} \\
n_{3}=(D x(x-2 D z)-\sqrt{D y}(x+2 D z))^{2} \\
n_{4}=(3 D x(x+2 D z)-\sqrt{D y}(x-2 D z))^{2}
\end{gathered}
$$

Example

Consider the case when $D=6$, then the rational point $(x: y: z)=(-8:-16: 1)$ is on the curve $X_{0}^{(D)}(24)$. Using this case, we get the following progression

$$
\left(n_{1}, n_{2}, n_{3}, n_{4}\right)=\left((9-5 \sqrt{6})^{2},(15-\sqrt{6})^{2},(15+\sqrt{6})^{2},(9+5 \sqrt{6})^{2}\right)
$$

Lemma for Ranks

We have found that the 2-torsion subgroup of $X_{0}(24)$ is defined over \mathbb{Q}. From Kwon's (as cited by Gonzalez-Jimenez, Steuding) results we conclude that $X_{0}(24)(\mathbb{Q}(\sqrt{D}))_{\text {tors }}$ and $X_{0}(24)(\mathbb{Q})_{\text {tors }}$ are equal.

We can conclude that if there exists a non-constant / nontrivial progression of four-squares over $\mathbb{Q}(\sqrt{D})$, then there are infinitely many arithmetic progressions of four-squares.
An equivalent statement would be: if there exists a non-constant / nontrivial progression of four-squares over $\mathbb{Q}(\sqrt{D})$, then rank $X_{0}(24)(\mathbb{Q}(\sqrt{D})>0$.

Mordell-Weil Theorem

Theorem

(L. J. Mordell, 1922). Let E be an elliptic curve defined over \mathbb{Q}. Then $E(\mathbb{Q})$ is a finitely generated Abelian group. In particular,

$$
E(\mathbb{Q}) \simeq E(\mathbb{Q})_{\text {tors }} \times(\mathbb{Z})^{r}
$$

for some nonnegative integer r.

Mazur's theorem

Theorem

(B. Mazur, 1978). Let E be a rational elliptic curve, and let $E(\mathbb{Q})_{\text {tors }}$ denote its torsion subgroup. This finite group can only be one of fifteen types:

$$
E(\mathbb{Q})_{\text {tors }} \simeq \begin{cases}Z_{N}, & \text { for } N=1,2,3,4,5,6,7,8,9,10,12 \\ Z_{2} \times Z_{2 N} & \text { for } N=1,2,3,4\end{cases}
$$

In the case of arithmetic progressions of four squares, the torsion subgroup of the related elliptic curve $X_{0}^{D}(24)$ is always $Z_{2} \times Z_{4}$.

Let E be an elliptic curve over K , with all four points of order 2 being K-rational i.e.,

$$
E: Y^{2}=\left(X-e_{1}\right)\left(X-e_{2}\right)\left(X-e_{3}\right)
$$

where $e_{i} \in K$.
We define the map

$$
e_{2}: \frac{E(K)}{2 E(K)} \times E[2] \rightarrow \frac{K^{\times}}{\left(K^{\times}\right)^{2}},(P, T) \mapsto \begin{cases}1 & \text { if } T=\mathcal{O} \\ X-e & \text { otherwise } ;\end{cases}
$$

where $P=(X: Y: 1)$ and $T=(e: 0: 1)$. This map is sometimes called the Tate pairing.

Theorem

(The Tate Pairing). Tate pairing is a perfect pairing, as it is
(1) Non-degenerate: If $e_{2}(P, T)=1$ for all $T \in E[2]$ then $P \in 2 E(K)$.
(2) Bilinear: for all $P, Q \in E(K)$ and $T \in E[2]$ we have

$$
\begin{aligned}
e_{2}(P \oplus Q, T) & =e_{2}(P, T) \times e_{2}(Q, T), \\
e_{2}\left(P, T_{1} \oplus T_{2}\right) & =e_{2}\left(P, T_{1}\right) \times e_{2}\left(P, T_{2}\right)
\end{aligned}
$$

Complete 2-Descent

Theorem

(Complete 2-Descent). Let E be an elliptic curve over K with $E[2] \subseteq E(K)$ i.e.,

$$
E: Y^{2}=\left(X-e_{1}\right)\left(X-e_{2}\right)\left(X-e_{3}\right)
$$

where $e_{i} \in K$.

1. Let $\delta_{E}: \frac{E(K)}{2 E(K)} \rightarrow \frac{\left(K^{*}\right)}{\left(K^{*}\right)^{2}} \times \frac{\left(K^{\times}\right)}{\left(K^{\times}\right)^{2}}, P \mapsto\left(e_{2}\left(P, T_{1}\right), e_{2}\left(P, T_{2}\right)\right)$; where e_{2} is the Tate pairing and $T_{i}=\left(e_{i}: 0: 1\right) \in E[2]$. This is an injective group homomorphism.
Furthermore the image of δ_{i} lies in the finitely generated Abelian group generated by the set $\mathbb{Q}\left(S_{i}, 2\right)$, which is the collection of all square-free divisors of S_{i}.

Complete 2-Descent

Theorem

2. For each $d=\left(d_{1}, d_{2}\right) \in K^{\times} \times K^{\times}$, consider the projective curve

$$
\mathcal{C}_{d}: d_{1} u^{2}-d_{2} v^{2}=\left(e_{2}-e_{1}\right), d_{1} u^{2}-d_{z} d_{2} w^{2}=\left(e_{3}-e_{1}\right)
$$

If $d \equiv \delta_{E}(P)$ for some $P \in E(K)$ then there is an K-rational point (u, v, w) on \mathcal{C}_{d}. Conversely, the map $\psi: \mathcal{C}_{d} \rightarrow E$ defined by

$$
\left(z_{1}: z_{2}: z_{3}: z_{4}\right) \mapsto\left(d_{1} z_{1}^{2} z_{0}+e_{1} z_{0}^{3}: d_{1} d_{2} z_{1} z_{2} z_{3}: z_{0}^{3}\right)
$$

sends a point $Z \in \mathcal{C}_{d}(K)$ to a point $\psi(Z) \in E(K)$, and

$$
\delta_{E}(\psi(Z))=\left(d_{1}\left(\bmod \left(K^{\times}\right)^{2}\right), d_{2}\left(\bmod \left(K^{\times}\right)^{2}\right)\right) .
$$

Computing The Rank

As $E(\mathbb{Q})=E(\mathbb{Q})_{\text {tors }} \times Z^{r} \cong Z_{2} \times Z_{2 N} \times Z^{r}$, we have $2 E(\mathbb{Q}) \cong Z_{N} \times\left(Z_{2}\right)^{r}$, thus $\frac{E(\mathbb{Z})}{2 E(\mathbb{Z}} \cong\left(Z_{2}\right)^{r+2}$. We compute the image of the connecting homomorphism δ_{E}; there will be 2^{r+2} elements, where r is the rank of E.

Motivation for Proving No Solutions

There is a motivation for eliminating points $\left(d_{1}, d_{2}\right)$ from the image of δ_{E} for a given $D=m p$. We will eliminate points by showing that the equations:

$$
\begin{gathered}
d_{1} u^{\prime 2}-d_{2} v^{\prime 2}=-D \\
d_{2} v^{\prime 2}-d_{1} d_{2} w^{\prime 2}=-3 D
\end{gathered}
$$

do not have a rational solution $\left(u^{\prime}, v^{\prime}, w^{\prime}\right)$

Key Equations

We can write $u^{\prime}=\frac{u}{z}, v^{\prime}=\frac{v}{z}$, and $w^{\prime}=\frac{w}{z}$ such that $\operatorname{gcd}(u, v, w, z)=1$ and $z \neq 0$. Using these substitutions and multiplying through by z^{2} we get:

$$
\begin{gathered}
d_{1} u^{2}-d_{2} v^{2}=-D z^{2} \\
d_{2} v^{2}-d_{1} d_{2} w^{2}=-3 D z^{2}
\end{gathered}
$$

So if these equations don't have an integer solution (u, v, w, z), we can eliminate $\left(d_{1}, d_{2}\right)$ from the image.

- We know that the image of δ_{E} is a multiplicative group.
- We know that the points $(1,1),(1, D),(-D,-3)$, and $(-D,-3 D)$ are in the image of δ_{E}.
- Thus, if we know a point x is not in the image of δ_{E}, we can conclude that the product of x and any point in the image of δ_{E} is not in the image of δ_{E}.
- Notice equation 1 and equation 2 can easily be rearranged to the form:

$$
a x^{2}+b y^{2}+c z^{2}=0
$$

Where x, y, and z are integers such that $\operatorname{gcd}(x, y, z)=1$.

- Also notice that a, b, and c are symmetric in this equation.
- Theorems have been formulated for conditions on a, b, and c that yield no integer solutions to the equation.

Theorem

If a, b, and c have the same sign and are all non-zero, there are no solutions to $a x^{2}+b y^{2}+c z^{2}=0$.

Theorem

If $a \not \equiv 0(\bmod 3), a \equiv b(\bmod 3)$, and $c \equiv 3,6(\bmod 9)$, then $a x^{2}+b y^{2}+c z^{2}=0$ has no integer solution.

Theorem

If $a \equiv 3,6(\bmod 9), a \equiv b(\bmod 9)$, and $c \not \equiv 0(\bmod 3)$, then $a x^{2}+b y^{2}+c z^{2}=0$ has no integer solution.

Theorem

If $a \equiv \pm 1(\bmod 4)$ and $a \equiv b \equiv c(\bmod 4)$, then $a x^{2}+b y^{2}+c z^{2}=0$ has no integer solutions.

Theorem

If $a \equiv 2,6(\bmod 8), b+c \not \equiv 0(\bmod 8), a+b+c \not \equiv 0(\bmod 8)$, and a and b are odd, then $a x^{2}+b y^{2}+c z^{2}=0$ has no integer solutions.

Theorem

Suppose $D \equiv 2,6(\bmod 8)$ and $d_{1}, d_{2} \not \equiv 0,4(\bmod 8)$ and there is a solution to the homogeneous space, then one of the following holds.

$$
\begin{gathered}
d_{1} \equiv d_{2} \equiv 1(\bmod 8) \\
d_{1} \equiv 3 D(\bmod 4) \text { and } d_{2} \equiv 1(\bmod 4) \\
d_{2} \equiv D(\bmod 8) \\
d_{1} \equiv 3 D+1 \text { and } d_{2} \equiv 1(\bmod 8)
\end{gathered}
$$

Theorem

Suppose d_{1} and d_{2} are odd, $D \equiv 1(\bmod 8)$, and the equations have a solution, then $\left(d_{1}, d_{2}\right)$ is one of the following mod 8 :
$(1,1)$
$(5,1)$
$(3,5)$
$(7,5)$

Computer Program

- A computer program was written in python that uses the elimination theorems to eliminate points from the image of δ_{E} to gain an upper bound on the size.
- We can use these upper bounds on the size of the image to form an upper bound on the rank of $X_{0}^{(D)}(24)$ for $D=m p$

The columns correspond to m while the rows correspond to $p(\bmod 24)$.

	1	2	3	6	-1	-2	-3	-6
1	2	2	2	3	2	2	2	2
5	0	1	0	1	1	1	1	0
7	0	0	1	1	0	2	1	0
11	1	1	0	1	0	1	1	2
13	1	0	2	1	2^{*}	0	1	0
17	1	1	0	1	1	1	0	0
19	0	2	0	1	1	0	1	2
23	1	1	1	1	1	1	1	2

For $D=11$, the rank is 1 so we can find a non-torsion point $(64,720)$ on the elliptic curve which yields the arithmetic progression:

$$
\begin{aligned}
& n_{1}=(181632-30240 \sqrt{11})^{2} \\
& n_{2}=(29568-61920 \sqrt{11})^{2} \\
& n_{3}=(29568+61920 \sqrt{11})^{2} \\
& n_{4}=(181632+30240 \sqrt{11})^{2}
\end{aligned}
$$

For $D=13$, the rank is 1 so we can find a non-torsion point $(-25,90)$ on the elliptic curve which yields the arithmetic progression:

$$
\begin{gathered}
n_{1}=(-975-4590 \sqrt{13})^{2} \\
n_{2}=(16575+90 \sqrt{13})^{2} \\
n_{3}=(16575-90 \sqrt{13})^{2} \\
n_{4}=(-975+4590 \sqrt{13})^{2}
\end{gathered}
$$

Cubes in Arithmetic Progressions

Theorem

Denote

$$
\begin{gathered}
X_{0}(36): y^{2}=x^{3}-27 \\
x_{0}^{(D)}(36): y^{2}=x^{3}-27 D^{3}
\end{gathered}
$$

Then there exists a nonconstant / nontrivial progression of three cubes over $\mathbb{Q}(\sqrt{D})$, if and only if rank $X_{0}^{(D)}(36)(\mathbb{Q})>0$.

An Arithmetic Progression to a Point on $X_{0}(36)$

Given a 3-term arithmetic progression of three cubes $\left(n_{1}, n_{2}, n_{3}\right)$, define a rational point ($x: y: z$):

$$
\begin{gathered}
x=-6\left(\sqrt[3]{n_{1}}+\sqrt[3]{n_{2}}+\sqrt[3]{n_{3}}\right)\left(\sqrt[3]{n_{1}}-2 \sqrt[3]{n_{2}}+\sqrt[3]{n_{3}}\right) \\
\left.y=-27\left(\sqrt[3]{n_{1}}{ }^{2}-\sqrt[3]{n_{3}}\right)^{2}\right) \\
z=\left(\sqrt[3]{n_{1}}-2 \sqrt[3]{n_{2}}+\sqrt[3]{n_{3}}\right)^{2}
\end{gathered}
$$

This point lies on the curve $y^{2} z=x^{3}-27 z^{3}$.

Solutions

Rational Points on $y^{2} z=x^{3}-27 z^{3}$

$\left(\sqrt[3]{n_{1}}: \sqrt[3]{n_{2}}: \sqrt[3]{n_{3}}\right)$	$(x: y: z)$
$(+1:+1:+1)$	$(0: 1: 0)$
$(-1: 0:+1)$	$(3: 0: 1)$

From this we can conclude that there are no nontrivial arithmetic progressions of three rational cubes over \mathbb{Q}. Additionally we observe that $X_{0}(36) \cong Z_{2}$ as an abelian group.

A Point to an Arithmetic Progression

Given a nonzero rational number D, we say that $X_{0}^{(D)}(36): y^{2} z=x^{3}-27 D^{3} z^{3}$ has a nontrivial rational point $(x: y: z)$. We then have an arithmetic progression of three cubes $\left(n_{1}, n_{2}, n_{3}\right)$ over $\mathbb{Q}(\sqrt{D})$ defined by the following:

$$
\begin{aligned}
& n_{1}=\left((x-3 D z)^{2}-\sqrt{D y z}\right)^{3} \\
& n_{2}=((x-3 D z)(x+6 D z))^{3}=\left((x-3 D z)^{2}+\sqrt{D y z}\right)^{3} \\
& n_{3}=((x-2)
\end{aligned}
$$

Example

Consider the case when $D=2$, then the rational point $(x: y: z)=(10: 28: 1)$ is on the curve $X_{0}^{(D)}(36)$. In this case, we get the following progression:

$$
\left(n_{1}, n_{2}, n_{3}\right)=\left((4-21 \sqrt{2})^{3}, 22^{3},(4+21 \sqrt{2})^{3}\right)
$$

Lemma for Ranks

From Gonzalez-Jimenez's paper we conclude that $X_{0}(36)(\mathbb{Q}(\sqrt{D}))_{\text {tors }}$ and $X_{0}(36)(\mathbb{Q})_{\text {tors }}$ are equal, when $D \neq 3$.

Summary

We conclude that points that we find for progressions of three cubes are not torsion points, and thus rank $X_{0}(36)(\mathbb{Q}(\sqrt{D}))>0$.

Descent via Two Isogenies

Let E denote an elliptic curve over \mathbb{Q}.

1) $E(\mathbb{Q}) \simeq E(\mathbb{Q})_{\text {tors }} \times \mathbb{Z}^{r}$
2) $E^{(D)}(\mathbb{Q}) \simeq E^{(D)}(\mathbb{Q})_{\text {tors }} \times \mathbb{Z}^{r(D)}$
3) $E(\mathbb{Q}(\sqrt{D})) \simeq E\left(\mathbb{Q}(\sqrt{D})_{\text {tors }} \times \mathbb{Z}^{R}, R=r+r(D)\right.$
$X_{0}(36)(\mathbb{Q}) \simeq Z_{2} \Rightarrow r=0$. Thus, $\operatorname{rank}\left(X_{0}(36)(\mathbb{Q}(\sqrt{D}))>0\right.$
if and only if rank $\left(X_{0}(36)^{(D)}(\mathbb{Q})\right)>0$. Yet,
$X_{0}(36)^{(D)}(\mathbb{Q}): y^{2}=x^{3}-27 D^{3}=(x-3 D)\left(x^{2}+D x+9 D^{2}\right)$, the set of the 2 -torsion points of $X_{0}(36)^{(D)}$ is not a subset of \mathbb{Q}. Thus complete 2-descent is not useful in this case; we have to use descent via two isogenies instead.

Isogenies

However, for any quadratic twist $X_{0}^{(D)}(36)(\mathbb{Q})$, there is a rational point $(x: y: z)=(-3 D: 0: 1)$ in $X_{0}(36)[2]$. Thus, we have the 2-isogeny $\phi: X_{0}(36)^{(D)} \rightarrow E^{(D)}$
$(x: y: z) \mapsto\left(\frac{x^{2}-3 D x z+27 D^{2} z^{2}}{x-3 D z}: \frac{x^{2}-6 D x z-18 D^{2} z^{2}}{(x-3 D z)^{2}} y: z\right)$
where $E^{(D)}: y^{2} z=x^{3}-135 D^{2} x z^{2}-594 D^{3} z^{3}$. We have that $\operatorname{ker}(\phi)=X_{0}^{(D)}(\mathbb{Q})_{\text {tors }}$.

Isogenies

We may construct
$\phi^{\prime}: E^{(D)} \rightarrow X_{0}(36)^{(D)}$
$(x: y: z) \mapsto\left(\frac{1}{4}\left[\frac{x^{2}+6 D x z-27 D^{2} z^{2}}{x+6 D z}\right]: \frac{1}{8}\left[\frac{x^{2}+12 D x z+63 D^{2} z^{2}}{(x+6 D z)^{2}} y\right]: z\right)$
We have that $\operatorname{ker}\left(\phi^{\prime}\right)=\{P=(-6 D: 0: 1), \mathcal{O}\}$. By the property noted earlier, we have that $\phi \circ \phi^{\prime}=2 X_{0}^{(D)}(36)(\mathbb{Q})$. Note that $P=(-6 D: 0: 1)$ has order two, so we see that $\operatorname{ker}(\phi)=X_{0}^{(D)}(\mathbb{Q})[2]$ and $\operatorname{ker}\left(\phi^{\prime}\right)=E^{(D)}(\mathbb{Q})[2]$.

Computing The Rank

$X_{0}^{(D)}(36)(\mathbb{Q}) \simeq Z_{2} \times \mathbb{Z}^{r(D)} \Rightarrow \frac{X_{0}^{(D)}(36)(\mathbb{Q})}{2 X_{0}^{(D)}(36)(\mathbb{Q})} \simeq Z_{2}+\mathbb{Z}^{r(D)+1}$, where
$r(D)$ is the rank of $X_{0}(36)^{(D)}(\mathbb{Q})$.
So, in order to compute $r(D)$, we need to count the cosets in
$\frac{X_{0}^{(D)}(36)(\mathbb{Q})}{2 X_{0}^{(D)}(36)(\mathbb{Q})}$.

Counting Cosets in $\frac{x_{0}(36)(\mathbb{Q})}{}$ $2 X_{0}^{(D)}(36)(\mathbb{Q})$

$$
\begin{aligned}
& \text { We have }\left|\frac{E^{(D)}(\mathbb{Q})[\phi]}{\phi\left(X_{0}(36)^{(D)}(\mathbb{Q})[2]\right.}\right|\left|\frac{X_{0}(36)^{(D)}(\mathbb{Q})}{2 X_{0}(36)^{(D)}(\mathbb{Q})}\right|= \\
& \left|\frac{E^{(D)}(\mathbb{Q})}{\phi\left(X_{0}(36)^{(D)}(\mathbb{Q})\right)} \| \frac{X_{0}(36)^{(D)}(\mathbb{Q})}{\phi\left(E^{(D)}(\mathbb{Q})\right)}\right|=|\operatorname{coker}(\phi)|\left|\operatorname{coker}\left(\phi^{\prime}\right)\right| .
\end{aligned}
$$

Counting Cosets in $2 X_{0}^{(D)}(36)(\mathbb{Q})$

Note that $\left|\frac{E^{(D)}(\mathbb{Q})[\phi]}{\phi\left(X_{0}(36)^{(D)}(\mathbb{Q})[2]\right.}\right|=2$, since $\left|E^{(D)}(\mathbb{Q})[\phi]\right|=2$ and $\phi\left(X_{0}(36)^{(D)}(\mathbb{Q})[2]\right)$ consists only of the point at infinity, so
$\left|\frac{E^{(D)}(\mathbb{Q})[\phi]}{\phi\left(X_{0}(36)^{(D)}(\mathbb{Q})[2]\right.}\right|=\frac{2}{1}=2$. Thus,
$\left|\frac{E^{(D)}(\mathbb{Q})[\phi]}{\phi\left(X_{0}(36)^{(D)}(\mathbb{Q})[2]\right.}\right|\left|\frac{X_{0}(36)^{(D)}(\mathbb{Q})}{2 X_{0}(36)^{(D)}(\mathbb{Q})}\right|=$
$\left|\frac{E^{(D)}(\mathbb{Q})}{\phi\left(X_{0}(36)^{(D)}(\mathbb{Q})\right)}\right|\left|\frac{X_{0}(36)^{(D)}(\mathbb{Q})}{\phi\left(E^{(D)}(\mathbb{Q})\right)}\right| \Rightarrow$
$2\left|\frac{X_{0}(36)^{(D)}(\mathbb{Q})}{2 X_{0}(36)^{(D)}(\mathbb{Q})}\right|=\left|\frac{E^{(D)}(\mathbb{Q})}{\phi\left(X_{0}(36)^{(D)}(\mathbb{Q})\right)}\right|\left|\frac{X_{0}(36)^{(D)}(\mathbb{Q})}{\phi\left(E^{(D)}(\mathbb{Q})\right)}\right| \Rightarrow$
$\left|\frac{X_{0}(36)^{(D)}(\mathbb{Q})}{2 X_{0}(36)^{(D)}(\mathbb{Q})}\right|=\frac{1}{2}\left|\frac{E^{(D)}(Q)}{\phi\left(X_{0}(36)^{(D)}(\mathbb{Q})\right)}\right|\left|\frac{X_{0}(36)^{(D)}(\mathbb{Q})}{\phi\left(E^{(D)}(\mathbb{Q})\right)}\right| \Rightarrow$
$\left|\frac{X_{0}(36)^{(D)}(\mathbb{Q})}{2 X_{0}(36)^{(D)}(\mathbb{Q})}\right|=\frac{|\operatorname{coker}(\phi)|\left|\operatorname{coker}\left(\phi^{\prime}\right)\right|}{2}$.

Computing Cokernels

To avoid working directly with $\operatorname{coker}(\phi)$ and $\operatorname{coker}\left(\phi^{\prime}\right)$, whose structure may be difficult to work with, we define the group homomorphism
$\delta: \frac{E^{(D)}(\mathbb{Q})}{\phi\left(X_{0}(36)^{(D)}(\mathbb{Q})\right)} \rightarrow \frac{\mathbb{Q}^{\times}}{\left(\mathbb{Q}^{\times}\right)^{2}}$
$(x, y) \mapsto x+6 D \bmod \left(\mathbb{Q}^{\times}\right)^{2}$, if $x+6 D \neq 0$
$\mathcal{O} \mapsto 1 \bmod \left(\mathbb{Q}^{\times}\right)^{2}$, if $x+6 D=0$
(δ maps the elements of $\frac{E^{(D)}(\mathbb{Q})}{\phi\left(X_{0}(36)^{(D)}(\mathbb{Q})\right)}$ to their square-free parts) and we define the group homomorphism
$\delta^{\prime}: \frac{X_{0}(36)^{(D)}(\mathbb{Q})}{\phi^{\prime}\left(E^{(D)}(\mathbb{Q})\right)} \rightarrow \frac{\mathbb{Q}^{\times}}{\left(\mathbb{Q}^{\times}\right)^{2}}$
$(x, y) \mapsto x-3 D \bmod \left(\mathbb{Q}^{\times}\right)^{2}$
(δ^{\prime} maps the elements of $\frac{X_{0}(36)^{(D)}(\mathbb{Q})}{\phi^{\prime}\left(E^{(D)}(\mathbb{Q})\right)}$ to their square-free parts.)

Computing Cokernels

Both $\delta: \operatorname{coker}(\phi) \rightarrow \frac{\mathbb{Q}^{\times}}{\left(\mathbb{Q}^{\times}\right)^{2}}$ and
$\delta^{\prime}: \operatorname{coker}\left(\phi^{\prime}\right) \rightarrow \frac{\mathbb{Q}^{\times}}{\left(\mathbb{Q}^{\times}\right)^{2}}$ are injective group homomorphisms
$2^{(r+1)}=\frac{|\operatorname{lm}(\delta)|\left|\operatorname{Im}\left(\delta^{\prime}\right)\right|}{2}$.
Let $S=\left\{\mathrm{k} \mid \mathrm{k}\right.$ prime, $\left.\mathrm{k} \mid 27 D^{2}\right\}$. Notice that $\operatorname{Im}(\delta)$ is a subset of $\mathbb{Q}(S, 2)$. Hence, $|\operatorname{lm}(\delta)| \leq|\mathbb{Q}(S, 2)|$ Likewise, $\operatorname{Im}\left(\delta^{\prime}\right)$ is a subset of $\mathbb{Q}(S, 2)$. Hence, $\left|\operatorname{lm}\left(\delta^{\prime}\right)\right| \leq|\mathbb{Q}(S, 2)|$.

Homogeneous Space

To compute $|\operatorname{Im}(\delta)|$, we may consider values of d in $\frac{\mathbb{Q}^{\times}}{\left(\mathbb{Q}^{\times}\right)^{2}}$ such that the equation $D_{d}: v^{2}=d-18 D u^{2}-\frac{27 D^{2}}{d} u^{4}$ has a rational solution (u, v).
To compute $\left|\operatorname{Im}\left(\delta^{\prime}\right)\right|$, we may consider values of d^{\prime} in $\frac{\mathbb{Q}^{\times}}{\left(\mathbb{Q}^{\times}\right)^{2}}$ such that the equation
$\left.D_{d^{\prime}}: w^{2}=d^{\prime}+9 D z^{2}+\frac{27 D^{2}}{d^{\prime}}\right) z^{4}$
has a rational solution (w, z).

Motivation

- There is a motivation for eliminating points from the image of δ and δ^{\prime} for a given $D=m p$.
- If we can eliminate points from the image, we can find an upper bound on the size of the image, and thus an upper bound on the rank.

Eliminating Points from $\operatorname{Im}(\delta)$

In order to show a point d is not in the image δ, it will suffice to show that there are no rational solutions to:

$$
v^{\prime 2}=d-18 D u^{\prime 2}-\frac{27 D^{2}}{d} u^{\prime 4}
$$

If we let $v^{\prime}=\frac{v}{z}$ and $u^{\prime}=\frac{u}{z}$ such that $\operatorname{gcd}(u, v, z)=1$, and multiply through by z^{4}, we get:

$$
v^{2} z^{2}=d z^{4}-18 D u^{2} z^{2}-\frac{27 D^{2}}{d} u^{4}
$$

It will suffice to show there are no integer solutions to this equation to eliminate a point from the image.

Eliminating Points from $\operatorname{Im}\left(\delta^{\prime}\right)$

In order to show a point d is not in the image of δ^{\prime}, it will suffice to show that there are no rational solutions to:

$$
v^{2}=d+9 D u^{2}+\frac{27 D^{2}}{d} u^{4}
$$

Let $v^{\prime}=\frac{v}{z}$ and $u^{\prime}=\frac{u}{z}$ such that $\operatorname{gcd}(u, v, z)=1$, and multiply through by z^{4}.

$$
v^{2} z^{2}=d z^{4}-18 D u^{2} z^{2}-\frac{27 D^{2}}{d} u^{4}
$$

It will suffice to show there are no integer solutions to this equation to eliminate a point from the image.

Structures of the Images

- We know that 1 and -3 are in the image of δ and that 1 and 3 are in the image of δ^{\prime}
- Since the images are multiplicative groups, if we know a point x is not in the image, the product of x and a point from the image is not in the image.

Checking for Real Solutions

If there are no real solutions to the equations. Then there will be no rational solutions.

Theorem

If $d<0$ then there is no rational solution to $v^{2}=d+9 D u^{2}+\frac{27 D^{2}}{d} u^{4}$

- Let us denote the Legendre symbol as ($\frac{a}{b}$)
- Let $\left(\frac{a}{b}\right)=1$ if there exists an integer x such that $x^{2} \equiv a(\bmod b)$
- Otherwise, let $\left(\frac{a}{b}\right)=-1$

Checking for solutions Modulo p

Theorem

Let $D=m p$ and suppose $p \mid d$. If $(f r a c 3 p)=-1$ then there are no solutions to $v^{2} z^{2}=d z^{4}-18 D u^{2} z^{2}-\frac{27 D^{2}}{d} u^{4}$

Theorem

Let $D=m p$ and suppose $p \mid d$. If $\left(\frac{-3}{p}\right)=-1$ then there are no solutions to $v^{2} z^{2}=d z^{4}+9 D u^{2} z^{2}+\frac{27 D^{2}}{d} u^{4}$

Theorem

Let $D=m p$ and suppose $p \nmid d$. If $\left(\frac{d}{p}\right)=-1$ and $\left(\frac{-3 d}{p}\right)=-1$ then there are no solutions to $v^{2} z^{2}=d z^{4}-18 D u^{2} z^{2}-\frac{27 D^{2}}{d} u^{4}$

Checking for Solutions Modulo p

Theorem

Suppose $3 \nmid d$ and $3 \mid D$. If $d \equiv-1(\bmod 3)$ then there is no integer solution to either $v^{2} z^{2}=d z^{4}-18 D u^{2} z^{2}-\frac{27 D^{2}}{d} u^{4}$ or $v^{2} z^{2}=d z^{4}+9 D u^{2} z^{2}+\frac{27 D^{2}}{d} u^{4}$.

Checking for solutions Modulo 3

Theorem

Suppose $3 \nmid d$ and $3 \nmid D$. If $d \equiv-1(\bmod 3)$ then there is no integer solution to either $v^{2} z^{2}=d z^{4}-18 D u^{2} z^{2}-\frac{27 D^{2}}{d} u^{4}$ or $v^{2} z^{2}=d z^{4}+9 D u^{2} z^{2}+\frac{27 D^{2}}{d} u^{4}$.

Checking for solutions Modulo 8

Theorem

Suppose $2 \mid d$ which implies $2 \mid D$. Let $d=2 \bar{d}$ and $D=2 \bar{D}$. Then $v^{2} z^{2}=d z^{4}-18 D u^{2} z^{2}-\frac{27 D^{2}}{d} u^{4}$ has a solution only if $\bar{d} z^{4}-18 \bar{D}-\frac{27 \bar{D}^{2}}{\bar{d}} \equiv 0$ or $2(\bmod 8)$.

Theorem

Suppose $2 \mid d$ which implies $2 \mid D$. Let $d=2 \bar{d}$ and $D=2 \bar{D}$. Then $v^{2} z^{2}=d z^{4}+9 D u^{2} z^{2}+\frac{27 D^{2}}{d} u^{4}$ has a solution only if
$\bar{d} z^{4}+9 \bar{D}+\frac{27 \bar{D}^{2}}{\bar{d}} \equiv 0$ or $2(\bmod 8)$.

Checking for solutions Modulo 8

Theorem

Suppose $2 \nmid d$ but $2 \mid D$. Let $D=2 \bar{D}$. Then
$v^{2} z^{2}=d z^{4}+9 D u^{2} z^{2}+\frac{27 D^{2}}{d} u^{4}$ has a solution only if one of the following holds.

$$
\begin{gathered}
d+2 * 9 \bar{D}+4 * \frac{27 \bar{D}^{2}}{d} \equiv 1(\bmod 8) \\
d \equiv 1(\bmod 8) \\
4 * d+2 * 9 \bar{D}+\frac{27 \bar{D}^{2}}{d} \equiv 1(\bmod 8) \\
\frac{27 \bar{D}^{2}}{d} \equiv 1(\bmod 8)
\end{gathered}
$$

Computer Program

- A computer program was written in python that uses the elimination theorems to eliminate points from the image of δ and δ^{\prime} to gain an upper bound on the size.
- We can use these upper bounds on the size of the images to form an upper bound on the rank of $X_{0}^{(D)}(36)$ for $D=m p$

The columns correspond to m while the rows correspond to $p(\bmod 24)$.

	1	2	3	6	-1	-2	-3	-6
1	2	3	2	2	2	2	2	3
5	0	1	0	0	0	0	0	1
7	1	1	1	0	1	0	1	1
11	1	1	1	2	1	2	1	1
13	2	1	2	2	2	2	2	1
17	0	1	0	0	0	0	0	1
19	1	1	1	2	1	2	1	1
23	1	1	1	2	1	2	1	1

Examples of Arithmetic Progressions of Cubes

For $D=7$ and $D=11$, the rank is 1 and thus we can find a points on the elliptic curves.
For $D=7$, we can find the non-torsion point $\left(\frac{1785}{4}, \frac{75411}{8}\right)$ on the elliptic curve which yields the arithmetic progression:

$$
\begin{gathered}
n_{1}=(11573604-1809864 \sqrt{7})^{3} \\
n_{2}=(13288212)^{3} \\
n_{3}=(11573604+1809864 \sqrt{7})^{3}
\end{gathered}
$$

For $D=11$, we can find the non-torsion point $\left(\frac{55977}{1369}, \frac{9121140}{50653}\right)$ on the elliptic curve which yields the arithmetic progression:

$$
\begin{gathered}
n_{1}=(159680160000-1386039313260 \sqrt{11})^{3} \\
n_{2}=(2163533101200)^{3} \\
n_{3}=(159680160000+1386039313260 \sqrt{11})
\end{gathered}
$$

Acknowledgements

Dr. Edray Goins

James Weigant
National Science Foundation

Thank You for Your Attention

 Questions?