Arithmetic Progressions of Squares and Cubes over Quadratic Fields

Stephen Mussmann, Ronald Archer, Benny Martinez, Lirong Yuan, Han Liu

Department of Mathematics Purdue University

July 31, 2012

Mussmann, Archer, Martinez, Yuan, Liu Squares and Cubes in Progressions

Abstract

- In 1640, Pierre de Fermat sent a letter to Bernard Frenicle de Bessy claiming that there are no four or more rational squares in a nontrivial arithmetic progression.
- Each 4-term arithmetic progression of perfect squares corresponds to a rational point (x : y : z) on the elliptical curve

$$E: y^2 z = x^3 + 5x^2 z + 4xz^2$$

and one shows that $E(\mathbb{Q}) \simeq Z_2 \times Z_4$ consists of finitely many rational points.

Abstract

- Similar arithmetic progressions have also been studied. There are only finitely many 3-term arithmetic progressions whose terms are perfect cubes: {-1, 0 1} for example.
- Each 3-term arithmetic progressions of perfect cubes corresponds to a rational point (x : y : z) on the elliptic curve

$$E: y^2 z = x^3 - 27z^3$$

and one shows that $E(\mathbb{Q}) \simeq Z_2$ consist of finitely many rational points

Intro

- An m-term arithmetic progression is a collection of ration numbers $n_1, n_2, .., n_m$ such that there is a common difference $d = n_{i+1} n_i$.
- Examples of non-constant 3 term arithmetic progressions are $\{-1,\ 0\ ,1\}$ and $\{1,\ 25,\ 49\},$ where the common differences are d = 1 and d = 24, respectively.
- The latter example fits into a large family. There are infinitely many 3-term arithmetic progressions whose terms are perfect squares: consider for example the set

$$\{(x^2 - 2xz - z^2)^2, (x^2 + z^2)^2, (x^2 + 2xz - z^2)^2\}$$

for any rational numbers x and z.

Intro

- Both of these results can be generalized by working with larger fields. A 2009 paper in the ArXiv by Enrique Gonzalez-Jimenez and Jorn Steuding entitles "Arithmetic progressions of four squares over quadratic fields" discussed a slight generalization by looking at four squares in an arithmetic progression over quadratic extensions of the rational numbers.
- For example, one can use these results to construct the arithmetic progression

$$\{(9-5\sqrt{6})^2, (15-\sqrt{6})^2, (15+\sqrt{6})^2, (9+5\sqrt{6})^2\}$$

Intro

- Similarly, a 2010 paper by Enrique Gonzalez-Jimenez entitled "Three cubes in arithmetic progression over quadratic fields" discussed a slight generalization by looking at three cubes in an arithmetic progression over the same quadratic extensions.
- As an example, one can use these results to construct the arithmetic progression.

$$\{(4-21\sqrt{2})^3,22^3,(4+21\sqrt{2})^3\}$$

Summary

In this project, we seek to give explicit examples of four squares in arithmetic progressions as well as three cubes in arithmetic progression, and recast many ideas by performing a complete 2-descent of quadratic twists of certain elliptic curves. This will extend a 2010 paper Alexander Diaz, Zachary Flores, and Markus Vasquez entitled "Arithmetic Progression over Quadratic Fields"

Proposition

Consider the curve

$$E: y^2 + a_1 xy + a_3 y = x^3 + a_2 x^2 + a_4 x + a_6$$

Using a substitution, we find a curve in the form $Y^2 = X^3 + AX + B$. This is a nonsingular curve if and only if $4A^3 + 27B^2 \neq 0$.

A nonsingular curve as in the proposition above is called an elliptic curve. They can be defined over any field K. K-rational points are points on the curve whose coordinates belong to K.

Remark

Elliptic curves are helpful because we can use it to generate solutions of diophantine equations, pythagorean triplets, heron triangles, and so on.

★ Ξ ► ★ Ξ ►

- The idea behind considering non singular curves is we can draw lines

 including tangent lines to generate several points from a few known ones.
- If P and Q are K-rational points on an elliptic curve E, draw a line through them. If P=Q, then draw the line tangent to the curve at P; this line is well-defined because the gradient exists at all points on E.
- This line will intersect the curve as a third K-rational point, say P*Q. This process is known as the chord-tangent method.

< ∃ →

Denote K as either \mathbb{Q}, \mathbb{R} , or \mathbb{C} . Consider the elliptic curve

$$E: y^2 + a_1 x y + a_3 y = x^3 + a_2 x^2 + a_4 x + a_6$$

where $a_i \in K$. Let * denote the composition law which takes two K-rational points P and Q and computes the point of intersection P*Q of the projective curve E and the line through P and Q. Define the composition law $P \oplus Q = (P * Q) * O$. This turns $(E(K), \oplus)$ into an abelian group.

Theorem (L.J.Mordell, 1922)

Let E be an elliptic curve defined over \mathbb{Q} , then $E(\mathbb{Q})$ is a finitely generated abelian group. In particular,

 $E(\mathbb{Q})\simeq E(\mathbb{Q})_{tors} imes \mathbb{Z}^r$

for some nonnegative integer r.

- ∢ ⊒ ▶

Denote

$$X_0(24): y^2 = x^3 + 5x^2 + 4x$$
$$X_0^{(D)}(24): y^2 = x^3 + 5Dx^2 + 4D^2x$$

Then there exists a nonconstant / nontrivial progression of four squares over $\mathbb{Q}(\sqrt{D})$, if and only if rank $X_0^{(D)}(24)(\mathbb{Q}) > 0$.

(Ξ) + (Ξ) +

Given a 4-term arithmetic progression of four squares (n_1, n_2, n_3, n_4) , let a rational point (x : y : z) satisfy the following:

$$\begin{aligned} x &= 2(\sqrt{n_1} - 3\sqrt{n_2} - 3\sqrt{n_3} + \sqrt{n_4}) \\ y &= 6(\sqrt{n_1} - \sqrt{n_2} + \sqrt{n_3} - \sqrt{n_4}) \\ z &= \sqrt{n_1} + 3\sqrt{n_2} + 3\sqrt{n_3} + \sqrt{n_4} \end{aligned}$$

This constitutes a point on the curve $y^2 z = x^3 + 5x^2z + 4xz^2$

∢ ≣ ≯

Solutions

Rational Points on $y^2 z = x^3 + 5x^2 z + 4xz^2$					
$\left[\left(\sqrt{n_1} : \sqrt{n_2} : \sqrt{n_3} : \sqrt{n_4} \right) \right]$	(x:y:z)				
(-1:-1:+1:+1)	(0:1:0)				
(-1:+1:-1:+1)	(0:0:1)				
(-1:-1:-1:+1)	(-2:+2:1)				
(-1:+1:+1:+1)	(-2:-2:1)				
(+1:+1:+1:+1)	(-1:0:1)				
(+1:-1:-1:+1)	(-4:0:1)				
(+1:+1:-1:+1)	(2:+6:1)				
(+1:-1:+1:+1)	(2:-6:1)				

From this we can conclude that there are no nontrivial arithmetic progressions of four rational squares over \mathbb{Q} . Additionally we observe that $X_0(24) \cong Z_2 \times Z_4$ as an abelian group.

< ∃ >

Given a nonzero rational number D, we say that $X_0^{(D)}(24) : y^2 z = x^3 + 5Dx^2z + 4D^2xz^2$ has a nontrivial rational point (x : y : z). We then have an arithmetic progression of four-squares (n_1, n_2, n_3, n_4) over $\mathbb{Q}(\sqrt{D})$ given by the following:

$$n_1 = (3Dx(x+2Dz) + \sqrt{D}y(x-2Dz))^2$$

$$n_2 = (Dx(x-2Dz) + \sqrt{D}y(x+2Dz))^2$$

$$n_3 = (Dx(x-2Dz) - \sqrt{D}y(x+2Dz))^2$$

$$n_4 = (3Dx(x+2Dz) - \sqrt{D}y(x-2Dz))^2$$

Consider the case when D = 6, then the rational point (x : y : z) = (-8 : -16 : 1) is on the curve $X_0^{(D)}(24)$. Using this case, we get the following progression

$$(n_1, n_2, n_3, n_4) = ((9 - 5\sqrt{6})^2, (15 - \sqrt{6})^2, (15 + \sqrt{6})^2, (9 + 5\sqrt{6})^2)$$

프 에 제 프 에 다

We have found that the 2-torsion subgroup of $X_0(24)$ is defined over \mathbb{Q} . From Kwon's (as cited by Gonzalez-Jimenez, Steuding) results we conclude that $X_0(24)(\mathbb{Q}(\sqrt{D}))_{tors}$ and $X_0(24)(\mathbb{Q})_{tors}$ are equal. We can conclude that if there exists a non-constant / nontrivial progression of four-squares over $\mathbb{Q}(\sqrt{D})$, then there are infinitely many arithmetic progressions of four-squares. An equivalent statement would be: if there exists a non-constant / nontrivial progression of four-squares over $\mathbb{Q}(\sqrt{D})$, then rank $X_0(24)(\mathbb{Q}(\sqrt{D}) > 0.$

(L. J. Mordell, 1922). Let E be an elliptic curve defined over \mathbb{Q} . Then $E(\mathbb{Q})$ is a finitely generated Abelian group. In particular,

 $E(\mathbb{Q})\simeq E(\mathbb{Q})_{tors} imes (\mathbb{Z})^r$

for some nonnegative integer r.

< ∃ >

(B. Mazur, 1978). Let E be a rational elliptic curve, and let $E(\mathbb{Q})_{tors}$ denote its torsion subgroup. This finite group can only be one of fifteen types:

$$E(\mathbb{Q})_{tors} \simeq egin{cases} Z_N, & ext{for } N=1,\ 2,\ 3,\ 4,\ 5,\ 6,\ 7,\ 8,\ 9,\ 10,\ 12;\ Z_2 imes Z_{2N} & ext{for } N=1,\ 2,\ 3,\ 4. \end{cases}$$

In the case of arithmetic progressions of four squares, the torsion subgroup of the related elliptic curve $X_0^D(24)$ is always $Z_2 \times Z_4$.

Let E be an elliptic curve over K, with all four points of order 2 being K-rational i.e.,

$$E: Y^2 = (X - e_1)(X - e_2)(X - e_3)$$

where $e_i \in K$. We define the map

$$e_2: \frac{E(K)}{2E(K)} \times E[2] \to \frac{K^{\times}}{(K^{\times})^2}, (P, T) \mapsto \begin{cases} 1 & \text{if } T = \mathcal{O} \\ X - e & \text{otherwise}; \end{cases}$$

where P = (X : Y : 1) and T = (e : 0 : 1). This map is sometimes called the Tate pairing.

< ∃ >

(The Tate Pairing). Tate pairing is a perfect pairing, as it is (1) Non-degenerate: If $e_2(P, T) = 1$ for all $T \in E[2]$ then $P \in 2E(K)$. (2) Bilinear: for all $P, Q \in E(K)$ and $T \in E[2]$ we have

$$e_2(P\oplus Q, T)=e_2(P, T)\times e_2(Q, T),$$

 $e_2(P, T_1 \oplus T_2) = e_2(P, T_1) \times e_2(P, T_2).$

- ∢ ⊒ →

(Complete 2-Descent). Let E be an elliptic curve over K with $E[2] \subseteq E(K)$ i.e.,

$$E: Y^2 = (X - e_1)(X - e_2)(X - e_3)$$

where $e_i \in K$. 1. Let $\delta_E : \frac{E(K)}{2E(K)} \to \frac{(K^*)}{(K^*)^2} \times \frac{(K^{\times})}{(K^{\times})^2}$, $P \mapsto (e_2(P, T_1), e_2(P, T_2))$; where e_2 is the Tate pairing and $T_i = (e_i : 0 : 1) \in E[2]$. This is an injective group homomorphism. Furthermore the image of δ_i lies in the finitely generated Abelian group supported by the set $\mathbb{Q}(C, 2)$, which is the collection of all support for

generated by the set $\mathbb{Q}(S_i, 2)$, which is the collection of all square-free divisors of S_i .

2. For each $d = (d_1, d_2) \in K^{\times} \times K^{\times}$, consider the projective curve

$$C_d: d_1u^2 - d_2v^2 = (e_2 - e_1), \ d_1u^2 - d_zd_2w^2 = (e_3 - e_1)$$

If $d \equiv \delta_E(P)$ for some $P \in E(K)$ then there is an K-rational point (u, v, w) on C_d . Conversely, the map $\psi : C_d \to E$ defined by

$$(z_1: z_2: z_3: z_4) \mapsto (d_1 z_1^2 z_0 + e_1 z_0^3: d_1 d_2 z_1 z_2 z_3: z_0^3)$$

sends a point $Z \in C_d(K)$ to a point $\psi(Z) \in E(K)$, and

 $\delta_{\mathcal{E}}(\psi(Z)) = (d_1(\mod(K^{\times})^2), d_2(\mod(K^{\times})^2)).$

< 臣 > (臣 >)

As $E(\mathbb{Q}) = E(\mathbb{Q})_{tors} \times Z^r \cong Z_2 \times Z_{2N} \times Z^r$, we have $2E(\mathbb{Q}) \cong Z_N \times (Z_2)^r$, thus $\frac{E(\mathbb{Z})}{2E(\mathbb{Z})} \cong (Z_2)^{r+2}$. We compute the image of the connecting homomorphism δ_E ; there will be 2^{r+2} elements, where r is the rank of E. There is a motivation for eliminating points (d_1, d_2) from the image of δ_E for a given D = mp. We will eliminate points by showing that the equations:

$$d_1 u'^2 - d_2 v'^2 = -D$$
$$d_2 v'^2 - d_1 d_2 w'^2 = -3D$$

do not have a rational solution (u', v', w')

ヨト・モート

We can write $u' = \frac{u}{z}$, $v' = \frac{v}{z}$, and $w' = \frac{w}{z}$ such that gcd(u, v, w, z) = 1and $z \neq 0$. Using these substitutions and multiplying through by z^2 we get:

$$d_1 u^2 - d_2 v^2 = -Dz^2$$
$$d_2 v^2 - d_1 d_2 w^2 = -3Dz^2$$

So if these equations don't have an integer solution (u, v, w, z), we can eliminate (d_1, d_2) from the image.

글 🖌 🖌 글 🕨

- We know that the image of δ_E is a multiplicative group.
- We know that the points (1,1), (1,D), (-D,-3), and (-D,-3D) are in the image of δ_E .
- Thus, if we know a point x is not in the image of δ_E, we can conclude that the product of x and any point in the image of δ_E is not in the image of δ_E.

• Notice equation 1 and equation 2 can easily be rearranged to the form:

$$ax^2 + by^2 + cz^2 = 0$$

Where x, y, and z are integers such that gcd(x, y, z) = 1.

- Also notice that *a*, *b*, and *c* are symmetric in this equation.
- Theorems have been formulated for conditions on *a*, *b*, and *c* that yield no integer solutions to the equation.

If a, b, and c have the same sign and are all non-zero, there are no solutions to $ax^2 + by^2 + cz^2 = 0$.

Theorem

If
$$a \neq 0 \pmod{3}$$
, $a \equiv b \pmod{3}$, and $c \equiv 3, 6 \pmod{9}$, then $ax^2 + by^2 + cz^2 = 0$ has no integer solution.

If $a \equiv 3, 6 \pmod{9}$, $a \equiv b \pmod{9}$, and $c \not\equiv 0 \pmod{3}$, then $ax^2 + by^2 + cz^2 = 0$ has no integer solution.

Theorem

If $a \equiv \pm 1 \pmod{4}$ and $a \equiv b \equiv c \pmod{4}$, then $ax^2 + by^2 + cz^2 = 0$ has no integer solutions.

Theorem

If $a \equiv 2, 6 \pmod{8}$, $b + c \neq 0 \pmod{8}$, $a + b + c \neq 0 \pmod{8}$, and a and b are odd, then $ax^2 + by^2 + cz^2 = 0$ has no integer solutions.

< 注 > < 注 >

Suppose $D \equiv 2,6 \pmod{8}$ and $d_1, d_2 \not\equiv 0,4 \pmod{8}$ and there is a solution to the homogeneous space, then one of the following holds.

$$d_1 \equiv d_2 \equiv 1 (mod8)$$

 $d_1 \equiv 3D (mod4)$ and $d_2 \equiv 1 (mod4)$
 $d_2 \equiv D (mod8)$
 $d_1 \equiv 3D + 1$ and $d_2 \equiv 1 (mod8)$

Suppose d_1 and d_2 are odd, $D \equiv 1 \pmod{8}$, and the equations have a solution, then (d_1, d_2) is one of the following mod 8:

(1, 1)(5, 1)(3, 5)(7, 5)

- A computer program was written in python that uses the elimination theorems to eliminate points from the image of δ_E to gain an upper bound on the size.
- We can use these upper bounds on the size of the image to form an upper bound on the rank of $X_0^{(D)}(24)$ for D = mp

The columns correspond to m while the rows correspond to p(mod24).

	1	2	3	6	-1	-2	-3	-6
1	2	2	2	3	2	2	2	2
5	0	1	0	1	1	1	1	0
7	0	0	1	1	0	2	1	0
11	1	1	0	1	0	1	1	2
13	1	0	2	1	2*	0	1	0
17	1	1	0	1	1	1	0	0
19	0	2	0	1	1	0	1	2
23	1	1	1	1	1	1	1	2

臣▶ ★ 臣▶ -

э

Examples of Arithmetic Progressions of Squares

For D = 11, the rank is 1 so we can find a non-torsion point (64, 720) on the elliptic curve which yields the arithmetic progression:

$$n_1 = (181632 - 30240\sqrt{11})^2$$
$$n_2 = (29568 - 61920\sqrt{11})^2$$
$$n_3 = (29568 + 61920\sqrt{11})^2$$
$$n_4 = (181632 + 30240\sqrt{11})^2$$

For D = 13, the rank is 1 so we can find a non-torsion point (-25, 90) on the elliptic curve which yields the arithmetic progression:

$$n_1 = (-975 - 4590\sqrt{13})^2$$
$$n_2 = (16575 + 90\sqrt{13})^2$$
$$n_3 = (16575 - 90\sqrt{13})^2$$
$$n_4 = (-975 + 4590\sqrt{13})^2$$

Denote

$$X_0(36): y^2 = x^3 - 27$$

 $X_0^{(D)}(36): y^2 = x^3 - 27D^3$

Then there exists a nonconstant / nontrivial progression of three cubes over $\mathbb{Q}(\sqrt{D})$, if and only if rank $X_0^{(D)}(36)(\mathbb{Q}) > 0$.

Given a 3-term arithmetic progression of three cubes (n_1, n_2, n_3) , define a rational point (x : y : z):

$$\begin{aligned} x &= -6(\sqrt[3]{n_1} + \sqrt[3]{n_2} + \sqrt[3]{n_3})(\sqrt[3]{n_1} - 2\sqrt[3]{n_2} + \sqrt[3]{n_3}) \\ y &= -27(\sqrt[3]{n_1}^2 - \sqrt[3]{n_3})^2) \\ z &= (\sqrt[3]{n_1} - 2\sqrt[3]{n_2} + \sqrt[3]{n_3})^2 \end{aligned}$$

This point lies on the curve $y^2 z = x^3 - 27z^3$.

프 🖌 🔺 프 🛌

Rational Points on $y^2 z = x^3 - 27z^3$					
$\left(\sqrt[3]{n_1}:\sqrt[3]{n_2}:\sqrt[3]{n_3}\right)$	(x:y:z)				
(+1:+1:+1)	(0:1:0)				
(-1:0:+1)	(3:0:1)				

From this we can conclude that there are no nontrivial arithmetic progressions of three rational cubes over \mathbb{Q} . Additionally we observe that $X_0(36) \cong Z_2$ as an abelian group.

< ∃ →

3

Given a nonzero rational number D, we say that $X_0^{(D)}(36): y^2 z = x^3 - 27D^3 z^3$ has a nontrivial rational point (x:y:z). We then have an arithmetic progression of three cubes (n_1, n_2, n_3) over $\mathbb{Q}(\sqrt{D})$ defined by the following:

$$n_1 = ((x - 3Dz)^2 - \sqrt{D}yz)^3$$

$$n_2 = ((x - 3Dz)(x + 6Dz))^3$$

$$n_3 = ((x - 3Dz)^2 + \sqrt{D}yz)^3$$

Consider the case when D = 2, then the rational point (x : y : z) = (10 : 28 : 1) is on the curve $X_0^{(D)}(36)$. In this case, we get the following progression:

$$(n_1, n_2, n_3) = ((4 - 21\sqrt{2})^3, 22^3, (4 + 21\sqrt{2})^3)$$

- ∢ ≣ ▶

From Gonzalez-Jimenez's paper we conclude that $X_0(36)(\mathbb{Q}(\sqrt{D}))_{tors}$ and $X_0(36)(\mathbb{Q})_{tors}$ are equal, when $D \neq 3$.

(《 문 》 문

We conclude that points that we find for progressions of three cubes are not torsion points, and thus $\operatorname{rank} X_0(36)(\mathbb{Q}(\sqrt{D})) > 0$.

∃ >

Let *E* denote an elliptic curve over \mathbb{Q} . 1) $E(\mathbb{Q}) \simeq E(\mathbb{Q})_{tors} \times \mathbb{Z}^r$ 2) $E^{(D)}(\mathbb{Q}) \simeq E^{(D)}(\mathbb{Q})_{tors} \times \mathbb{Z}^{r(D)}$ 3) $E(\mathbb{Q}(\sqrt{D})) \simeq E(\mathbb{Q}(\sqrt{D})_{tors} \times \mathbb{Z}^R, R = r + r(D)$ $X_0(36)(\mathbb{Q}) \simeq Z_2 \Rightarrow r = 0$. Thus, rank $(X_0(36)(\mathbb{Q}(\sqrt{D})) > 0$ if and only if rank $(X_0(36)^{(D)}(\mathbb{Q})) > 0$. Yet, $X_0(36)^{(D)}(\mathbb{Q}) : y^2 = x^3 - 27D^3 = (x - 3D)(x^2 + Dx + 9D^2)$, the set of the 2-torsion points of $X_0(36)^{(D)}$ is not a subset of \mathbb{Q} . Thus complete 2-descent is not useful in this case; we have to use descent via two isogenies instead. However, for any quadratic twist $X_0^{(D)}(36)(\mathbb{Q})$, there is a rational point (x:y:z) = (-3D:0:1) in $X_0(36)[2]$. Thus, we have the 2-isogeny $\phi: X_0(36)^{(D)} \to E^{(D)}$ $(x:y:z) \mapsto (\frac{x^2 - 3Dxz + 27D^2z^2}{x - 3Dz}: \frac{x^2 - 6Dxz - 18D^2z^2}{(x - 3Dz)^2}y:z)$ where $E^{(D)}: y^2z = x^3 - 135D^2xz^2 - 594D^3z^3$. We have that $\ker(\phi) = X_0^{(D)}(\mathbb{Q})_{tors}$.

- < ≣ ▶

We may construct $\phi': E^{(D)} \to X_0(36)^{(D)}$ $(x:y:z) \mapsto (\frac{1}{4}[\frac{x^2 + 6Dxz - 27D^2z^2}{x + 6Dz}]: \frac{1}{8}[\frac{x^2 + 12Dxz + 63D^2z^2}{(x + 6Dz)^2}y]:z)$ We have that $\ker(\phi') = \{P = (-6D:0:1), \mathcal{O}\}$. By the property noted earlier, we have that $\phi \circ \phi' = 2X_0^{(D)}(36)(\mathbb{Q})$. Note that P = (-6D:0:1) has order two, so we see that $\ker(\phi) = X_0^{(D)}(\mathbb{Q})[2]$ and $\ker(\phi') = E^{(D)}(\mathbb{Q})[2]$.

$$\begin{split} X_0^{(D)}(36)(\mathbb{Q}) &\simeq Z_2 \times \mathbb{Z}^{r(D)} \Rightarrow \frac{X_0^{(D)}(36)(\mathbb{Q})}{2X_0^{(D)}(36)(\mathbb{Q})} \simeq Z_2 + \mathbb{Z}^{r(D)+1}, \text{ where} \\ r(D) \text{ is the rank of } X_0(36)^{(D)}(\mathbb{Q}). \\ \text{So, in order to compute } r(D), \text{ we need to count the cosets in} \\ \frac{X_0^{(D)}(36)(\mathbb{Q})}{2X_0^{(D)}(36)(\mathbb{Q})}. \end{split}$$

(注) → (注) →

æ

We have
$$|\frac{E^{(D)}(\mathbb{Q})[\phi]}{\phi(X_0(36)^{(D)}(\mathbb{Q})[2]}||\frac{X_0(36)^{(D)}(\mathbb{Q})}{2X_0(36)^{(D)}(\mathbb{Q})}| = |\frac{E^{(D)}(\mathbb{Q})}{\phi(X_0(36)^{(D)}(\mathbb{Q}))}||\frac{X_0(36)^{(D)}(\mathbb{Q})}{\phi(E^{(D)}(\mathbb{Q}))}| = |\operatorname{coker}(\phi)||\operatorname{coker}(\phi')|.$$

ㅋ ㅋ

Counting Cosets in

(36

To avoid working directly with $coker(\phi)$ and $coker(\phi')$, whose structure may be difficult to work with, we define the group homomorphism $\delta: \frac{E^{(D)}(\mathbb{Q})}{\phi(X_0(36)^{(D)}(\mathbb{Q}))} \to \frac{\mathbb{Q}^{\times}}{(\mathbb{Q}^{\times})^2}$ $(x, y) \mapsto x + 6D \mod (\mathbb{O}^{\times})^2$, if $x + 6D \neq 0$ $\mathcal{O} \mapsto 1 \mod (\mathbb{Q}^{\times})^2$, if x + 6D = 0(δ maps the elements of $\frac{E^{(D)}(\mathbb{Q})}{\phi(X_0(36)^{(D)}(\mathbb{Q}))}$ to their square-free parts) and we define the group homomorphism $\delta': \frac{X_0(36)^{(D)}(\mathbb{Q})}{\phi'(E^{(D)}(\mathbb{Q}))} \to \frac{\mathbb{Q}^{\times}}{(\mathbb{Q}^{\times})^2}$ $(x, y) \mapsto x - 3D \mod (\mathbb{O}^{\times})^2$ (δ ' maps the elements of $\frac{X_0(36)^{(D)}(\mathbb{Q})}{\phi'(F^{(D)}(\mathbb{Q}))}$ to their square-free parts.)

프 🖌 🛪 프 🛌

Computing Cokernels

Both
$$\delta$$
 : coker $(\phi) \rightarrow \frac{\mathbb{Q}^{\times}}{(\mathbb{Q}^{\times})^2}$ and
 δ' : coker $(\phi') \rightarrow \frac{\mathbb{Q}^{\times}}{(\mathbb{Q}^{\times})^2}$ are injective group homomorphisms
 $2^{(r+1)} = \frac{|\mathrm{Im}(\delta)| |\mathrm{Im}(\delta')|}{2}$.
Let $S = \{k | k \text{ prime, } k | 27D^2 \}$. Notice that $\mathrm{Im}(\delta)$ is a subset of $\mathbb{Q}(S, 2)$.
Hence, $|\mathrm{Im}(\delta)| \leq |\mathbb{Q}(S, 2)|$ Likewise, $\mathrm{Im}(\delta')$ is a subset of $\mathbb{Q}(S, 2)$. Hence,
 $|\mathrm{Im}(\delta')| \leq |\mathbb{Q}(S, 2)|$.

프 + + 프 +

æ

To compute $|\text{Im}(\delta)|$, we may consider values of d in $\frac{\mathbb{Q}^{\times}}{(\mathbb{Q}^{\times})^2}$ such that the equation $D_d: v^2 = d - 18Du^2 - \frac{27D^2}{d}u^4$ has a rational solution (u, v). To compute $|\text{Im}(\delta')|$, we may consider values of d' in $\frac{\mathbb{Q}^{\times}}{(\mathbb{Q}^{\times})^2}$ such that the equation

$$D_{d'}: w^2 = d' + 9Dz^2 + \frac{27D}{d'}z^4$$

has a rational solution (w, z) .

< 臣 > < 臣 > □

- There is a motivation for eliminating points from the image of δ and δ' for a given D = mp.
- If we can eliminate points from the image, we can find an upper bound on the size of the image, and thus an upper bound on the rank.

- ⊒ - ▶

In order to show a point d is not in the image δ , it will suffice to show that there are no rational solutions to:

$$v'^2 = d - 18Du'^2 - \frac{27D^2}{d}u'^4$$

If we let $v' = \frac{v}{z}$ and $u' = \frac{u}{z}$ such that gcd(u, v, z) = 1, and multiply through by z^4 , we get:

$$v^2 z^2 = dz^4 - 18Du^2 z^2 - \frac{27D^2}{d}u^4$$

It will suffice to show there are no integer solutions to this equation to eliminate a point from the image.

< ≣ >

In order to show a point d is not in the image of δ' , it will suffice to show that there are no rational solutions to:

$$v^2 = d + 9Du^2 + \frac{27D^2}{d}u^4$$

Let $v' = \frac{v}{z}$ and $u' = \frac{u}{z}$ such that gcd(u, v, z) = 1, and multiply through by z^4 .

$$v^2 z^2 = dz^4 - 18Du^2 z^2 - \frac{27D^2}{d}u^4$$

It will suffice to show there are no integer solutions to this equation to eliminate a point from the image.

프 🖌 🛪 프 🛌

- We know that 1 and -3 are in the image of δ and that 1 and 3 are in the image of δ'
- Since the images are multiplicative groups, if we know a point x is not in the image, the product of x and a point from the image is not in the image.

If there are no real solutions to the equations. Then there will be no rational solutions.

Theorem

If d < 0 then there is no rational solution to $v^2 = d + 9Du^2 + \frac{27D^2}{d}u^4$

< ∃ →

- Let us denote the Legendre symbol as $\left(\frac{a}{b}\right)$
- Let $\left(\frac{a}{b}\right) = 1$ if there exists an integer x such that $x^2 \equiv a(modb)$
- Otherwise, let $\left(\frac{a}{b}\right) = -1$

-∢ ≣ ▶

Let
$$D = mp$$
 and suppose $p \mid d$. If $(frac3p) = -1$ then there are no
solutions to $v^2 z^2 = dz^4 - 18Du^2 z^2 - \frac{27D^2}{d}u^4$

Theorem

Let
$$D = mp$$
 and suppose $p \mid d$. If $\left(\frac{-3}{p}\right) = -1$ then there are no solutions
to $v^2 z^2 = dz^4 + 9Du^2 z^2 + \frac{27D^2}{d}u^4$

Theorem

Let
$$D = mp$$
 and suppose $p \nmid d$. If $\left(\frac{d}{p}\right) = -1$ and $\left(\frac{-3d}{p}\right) = -1$ then there are no solutions to $v^2 z^2 = dz^4 - 18Du^2 z^2 - \frac{27D^2}{d}u^4$

医下 不正下

э

Suppose $3 \nmid d$ and $3 \mid D$. If $d \equiv -1 \pmod{3}$ then there is no integer solution to either $v^2 z^2 = dz^4 - 18Du^2 z^2 - \frac{27D^2}{d}u^4$ or $v^2 z^2 = dz^4 + 9Du^2 z^2 + \frac{27D^2}{d}u^4$.

Suppose $3 \nmid d$ and $3 \nmid D$. If $d \equiv -1 \pmod{3}$ then there is no integer solution to either $v^2 z^2 = dz^4 - 18Du^2 z^2 - \frac{27D^2}{d}u^4$ or $v^2 z^2 = dz^4 + 9Du^2 z^2 + \frac{27D^2}{d}u^4$.

Suppose 2 | d which implies 2 | D. Let
$$d = 2\bar{d}$$
 and $D = 2\bar{D}$. Then
 $v^2 z^2 = dz^4 - 18Du^2 z^2 - \frac{27D^2}{d}u^4$ has a solution only if
 $\bar{d}z^4 - 18\bar{D} - \frac{27\bar{D}^2}{\bar{d}} \equiv 0$ or 2 (mod 8).

Theorem

Suppose 2 | d which implies 2 | D. Let
$$d = 2\bar{d}$$
 and $D = 2\bar{D}$. Then
 $v^2 z^2 = dz^4 + 9Du^2 z^2 + \frac{27D^2}{d}u^4$ has a solution only if
 $\bar{d}z^4 + 9\bar{D} + \frac{27\bar{D}^2}{\bar{d}} \equiv 0$ or 2 (mod 8).

E > < E >

э

Suppose $2 \nmid d$ but $2 \mid D$. Let $D = 2\overline{D}$. Then $v^2 z^2 = dz^4 + 9Du^2 z^2 + \frac{27D^2}{d}u^4$ has a solution only if one of the following holds.

$$d + 2 * 9\overline{D} + 4 * \frac{27\overline{D}^2}{d} \equiv 1 \pmod{8}$$
$$d \equiv 1 \pmod{8}$$
$$4 * d + 2 * 9\overline{D} + \frac{27\overline{D}^2}{d} \equiv 1 \pmod{8}$$
$$\frac{27\overline{D}^2}{d} \equiv 1 \pmod{8}$$

- A computer program was written in python that uses the elimination theorems to eliminate points from the image of δ and δ' to gain an upper bound on the size.
- We can use these upper bounds on the size of the images to form an upper bound on the rank of $X_0^{(D)}(36)$ for D = mp

The columns correspond to m while the rows correspond to p(mod24).

	1	2	3	6	-1	-2	-3	-6
1	2	3	2	2	2	2	2	3
5	0	1	0	0	0	0	0	1
7	1	1	1	0	1	0	1	1
11	1	1	1	2	1	2	1	1
13	2	1	2	2	2	2	2	1
17	0	1	0	0	0	0	0	1
19	1	1	1	2	1	2	1	1
23	1	1	1	2	1	2	1	1

臣▶ ★ 臣▶ -

э

Examples of Arithmetic Progressions of Cubes

For D = 7 and D = 11, the rank is 1 and thus we can find a points on the elliptic curves.

For D = 7, we can find the non-torsion point $(\frac{1785}{4}, \frac{75411}{8})$ on the elliptic curve which yields the arithmetic progression:

$$n_1 = (11573604 - 1809864\sqrt{7})^3$$

 $n_2 = (13288212)^3$
 $n_3 = (11573604 + 1809864\sqrt{7})^3$

For D = 11, we can find the non-torsion point $\left(\frac{55977}{1369}, \frac{9121140}{50653}\right)$ on the elliptic curve which yields the arithmetic progression:

$$n_1 = (159680160000 - 1386039313260\sqrt{11})^3$$
$$n_2 = (2163533101200)^3$$
$$n_3 = (159680160000 + 1386039313260\sqrt{11})$$

Dr. Edray Goins

James Weigant National Science Foundation

Thank You for Your Attention

Questions?

Mussmann, Archer, Martinez, Yuan, Liu Squares and Cubes in Progressions

∃ ⊳