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Background

Abstract

In 1640, Pierre de Fermat sent a letter to Bernard Frenicle de Bessy
claiming that there are no four or more rational squares in a
nontrivial arithmetic progression.

Each 4-term arithmetic progression of perfect squares corresponds to
a rational point (x : y : z) on the elliptical curve

E : y2z = x3 + 5x2z + 4xz2

and one shows that E (Q) ' Z2 × Z4 consists of finitely many
rational points.
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Background

Abstract

Similar arithmetic progressions have also been studied. There are
only finitely many 3-term arithmetic progressions whose terms are
perfect cubes: {-1, 0 1} for example.

Each 3-term arithmetic progressions of perfect cubes corresponds to
a rational point (x : y : z) on the elliptic curve

E : y2z = x3 − 27z3

and one shows that E (Q) ' Z2 consist of finitely many rational
points

Mussmann, Archer, Martinez, Yuan, Liu Squares and Cubes in Progressions



Overview

Intro

An m-term arithmetic progression is a collection of ration numbers
n1, n2, ., nm such that there is a common difference d = ni+1 − ni .

Examples of non-constant 3 - term arithmetic progressions are
{-1, 0 ,1} and {1, 25, 49}, where the common differences are d = 1
and d = 24, respectively.

The latter example fits into a large family. There are infinitely many
3-term arithmetic progressions whose terms are perfect squares:
consider for example the set

{(x2 − 2xz − z2)2, (x2 + z2)2, (x2 + 2xz − z2)2}
for any rational numbers x and z.
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Overview

Intro

Both of these results can be generalized by working with larger
fields. A 2009 paper in the ArXiv by Enrique Gonzalez-Jimenez and
Jorn Steuding entitles ”Arithmetic progressions of four squares over
quadratic fields” discussed a slight generalization by looking at four
squares in an arithmetic progression over quadratic extensions of the
rational numbers.

For example, one can use these results to construct the arithmetic
progression

{(9− 5
√

6)2, (15−
√

6)2, (15 +
√

6)2, (9 + 5
√

6)2}
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Overview

Intro

Similarly, a 2010 paper by Enrique Gonzalez-Jimenez entitled ”Three
cubes in arithmetic progression over quadratic fields” discussed a
slight generalization by looking at three cubes in an arithmetic
progression over the same quadratic extensions.

As an example, one can use these results to construct the arithmetic
progression.

{(4− 21
√

2)3, 223, (4 + 21
√

2)3}
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Motivation

Summary

In this project, we seek to give explicit examples of four squares in
arithmetic progressions as well as three cubes in arithmetic progression,
and recast many ideas by performing a complete 2-descent of quadratic
twists of certain elliptic curves. This will extend a 2010 paper Alexander
Diaz, Zachary Flores, and Markus Vasquez entitled ”Arithmetic
Progression over Quadratic Fields”
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Definition

Proposition

Consider the curve

E : y2 + a1xy + a3y = x3 + a2x
2 + a4x + a6

Using a substitution, we find a curve in the form Y 2 = X 3 + AX + B.
This is a nonsingular curve if and only if 4A3 + 27B2 6= 0.

A nonsingular curve as in the proposition above is called an elliptic curve.
They can be defined over any field K. K-rational points are points on the
curve whose coordinates belong to K.

Remark

Elliptic curves are helpful because we can use it to generate solutions of
diophantine equations, pythagorean triplets, heron triangles, and so on.
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Chord-Tangent Method

The idea behind considering non singular curves is we can draw lines
- including tangent lines - to generate several points from a few
known ones.

If P and Q are K-rational points on an elliptic curve E, draw a line
through them. If P=Q, then draw the line tangent to the curve at P;
this line is well-defined because the gradient exists at all points on E.

This line will intersect the curve as a third K-rational point, say
P*Q. This process is known as the chord-tangent method.
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The Group Law

Theorem

Denote K as either Q,R, or C. Consider the elliptic curve

E : y2 + a1xy + a3y = x3 + a2x
2 + a4x + a6

where ai ∈ K. Let * denote the composition law which takes two
K-rational points P and Q and computes the point of intersection P*Q of
the projective curve E and the line through P and Q. Define the
composition law P ⊕ Q = (P ∗ Q) ∗ O. This turns (E (K ),⊕) into an
abelian group.
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The Mordell-Weil Group

Theorem (L.J.Mordell, 1922)

Let E be an elliptic curve defined over Q, then E (Q) is a finitely
generated abelian group. In particular,

E (Q) ' E (Q)tors × Zr

for some nonnegative integer r.
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Squares in Arithmetic Progressions

Theorem

Denote
X0(24) : y2 = x3 + 5x2 + 4x

X
(D)
0 (24) : y2 = x3 + 5Dx2 + 4D2x

Then there exists a nonconstant / nontrivial progression of four squares

over Q(
√
D), if and only if rank X

(D)
0 (24)(Q) > 0.
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An Arithmetic Progression to a Point

Given a 4-term arithmetic progression of four squares (n1, n2, n3, n4), let
a rational point (x : y : z) satisfy the following:

x = 2(
√
n1 − 3

√
n2 − 3

√
n3 +

√
n4)

y = 6(
√
n1 −

√
n2 +

√
n3 −

√
n4)

z =
√
n1 + 3

√
n2 + 3

√
n3 +

√
n4

This constitutes a point on the curve y2z = x3 + 5x2z + 4xz2
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Solutions

Rational Points on y2z = x3 + 5x2z + 4xz2

(
√
n1 :
√
n2 :
√
n3 :
√
n4) (x : y : z)

(-1:-1:+1:+1) (0:1:0)
(-1:+1:-1:+1) (0:0:1)
(-1:-1:-1:+1) (-2:+2:1)

(-1:+1:+1:+1) (-2:-2:1)
(+1:+1:+1:+1) (-1:0:1)
(+1:-1:-1:+1) (-4:0:1)
(+1:+1:-1:+1) (2:+6:1)
(+1:-1:+1:+1) (2:-6:1)

From this we can conclude that there are no nontrivial arithmetic
progressions of four rational squares over Q. Additionally we observe that
X0(24) ∼= Z2 × Z4 as an abelian group.
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A Point to an Arithmetic Progression

Given a nonzero rational number D, we say that

X
(D)
0 (24) : y2z = x3 + 5Dx2z + 4D2xz2 has a nontrivial rational point

(x : y : z). We then have an arithmetic progression of four-squares
(n1, n2, n3, n4) over Q(

√
D) given by the following:

n1 = (3Dx(x + 2Dz) +
√
Dy(x − 2Dz))2

n2 = (Dx(x − 2Dz) +
√
Dy(x + 2Dz))2

n3 = (Dx(x − 2Dz)−
√
Dy(x + 2Dz))2

n4 = (3Dx(x + 2Dz)−
√
Dy(x − 2Dz))2
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Example

Consider the case when D = 6, then the rational point

(x : y : z) = (−8 : −16 : 1) is on the curve X
(D)
0 (24). Using this case, we

get the following progression

(n1, n2, n3, n4) = ((9− 5
√

6)2, (15−
√

6)2, (15 +
√

6)2, (9 + 5
√

6)2)

.
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Lemma for Ranks

We have found that the 2-torsion subgroup of X0(24) is defined over Q.
From Kwon’s (as cited by Gonzalez-Jimenez, Steuding) results we
conclude that X0(24)(Q(

√
D))tors and X0(24)(Q)tors are equal.
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Summary

We can conclude that if there exists a non-constant / nontrivial
progression of four-squares over Q(

√
D), then there are infinitely many

arithmetic progressions of four-squares.
An equivalent statement would be: if there exists a non-constant /
nontrivial progression of four-squares over Q(

√
D), then rank

X0(24)(Q(
√
D) > 0.
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Mordell-Weil Theorem

Theorem

(L. J. Mordell, 1922). Let E be an elliptic curve defined over Q. Then
E (Q) is a finitely generated Abelian group. In particular,

E (Q) ' E (Q)tors × (Z)r

for some nonnegative integer r.
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Mazur’s theorem

Theorem

(B. Mazur, 1978). Let E be a rational elliptic curve, and let E (Q)tors
denote its torsion subgroup. This finite group can only be one of fifteen
types:

E (Q)tors '

{
ZN , for N= 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 12;

Z2 × Z2N for N= 1, 2, 3, 4.

In the case of arithmetic progressions of four squares, the torsion
subgroup of the related elliptic curve XD

0 (24) is always Z2 × Z4.
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The Tate Pairing

Let E be an elliptic curve over K, with all four points of order 2 being
K-rational i.e.,

E : Y 2 = (X − e1)(X − e2)(X − e3)

where ei ∈ K .
We define the map

e2 :
E (K )

2E (K )
× E [2]→ K×

(K×)2
, (P,T ) 7→

{
1 if T = O
X − e otherwise;

where P = (X : Y : 1) and T = (e : 0 : 1). This map is sometimes called
the Tate pairing.
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The Tate Pairing

Theorem

(The Tate Pairing). Tate pairing is a perfect pairing, as it is
(1) Non-degenerate: If e2(P,T ) = 1 for all T ∈ E [2] then P ∈ 2E (K ).
(2) Bilinear: for all P,Q ∈ E (K ) and T ∈ E [2] we have

e2(P ⊕ Q,T ) = e2(P,T )× e2(Q,T ),

e2(P,T1 ⊕ T2) = e2(P,T1)× e2(P,T2).
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Complete 2-Descent

Theorem

(Complete 2-Descent). Let E be an elliptic curve over K with
E [2] ⊆ E (K ) i.e.,

E : Y 2 = (X − e1)(X − e2)(X − e3)

where ei ∈ K.

1. Let δE : E(K)
2E(K) →

(K∗)
(K∗)2 ×

(K×)
(K×)2 , P 7→ (e2(P,T1), e2(P,T2)); where e2

is the Tate pairing and Ti = (ei : 0 : 1) ∈ E [2]. This is an injective group
homomorphism.
Furthermore the image of δi lies in the finitely generated Abelian group
generated by the set Q(Si , 2), which is the collection of all square-free
divisors of Si .
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Complete 2-Descent

Theorem

2. For each d = (d1, d2) ∈ K× × K×, consider the projective curve

Cd : d1u
2 − d2v

2 = (e2 − e1), d1u
2 − dzd2w

2 = (e3 − e1)

If d ≡ δE (P) for some P ∈ E (K ) then there is an K-rational point
(u, v ,w) on Cd . Conversely, the map ψ : Cd → E defined by

(z1 : z2 : z3 : z4) 7→ (d1z
2
1 z0 + e1z

3
0 : d1d2z1z2z3 : z30 )

sends a point Z ∈ Cd(K ) to a point ψ(Z ) ∈ E (K ), and

δE (ψ(Z )) = (d1( mod (K×)2), d2( mod (K×)2)).
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Computing The Rank

As E (Q) = E (Q)tors × Z r ∼= Z2 × Z2N × Z r , we have

2E (Q) ∼= ZN × (Z2)r , thus E(Z)
2E(Z

∼= (Z2)r+2. We compute the image of

the connecting homomorphism δE ; there will be 2r+2 elements, where r is
the rank of E .
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Motivation for Proving No Solutions

There is a motivation for eliminating points (d1, d2) from the image of δE
for a given D = mp. We will eliminate points by showing that the
equations:

d1u
′2 − d2v

′2 = −D

d2v
′2 − d1d2w

′2 = −3D

do not have a rational solution (u′, v ′,w ′)
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Key Equations

We can write u′ =
u

z
, v ′ =

v

z
, and w ′ =

w

z
such that gcd(u, v ,w , z) = 1

and z 6= 0. Using these substitutions and multiplying through by z2 we
get:

d1u
2 − d2v

2 = −Dz2

d2v
2 − d1d2w

2 = −3Dz2

So if these equations don’t have an integer solution (u, v ,w , z), we can
eliminate (d1, d2) from the image.
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The Structure of Im(δE )

We know that the image of δE is a multiplicative group.

We know that the points (1, 1), (1,D), (−D,−3), and (−D,−3D)
are in the image of δE .

Thus, if we know a point x is not in the image of δE , we can
conclude that the product of x and any point in the image of δE is
not in the image of δE .
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The Form of the Equations

Notice equation 1 and equation 2 can easily be rearranged to the
form:

ax2 + by2 + cz2 = 0

Where x , y , and z are integers such that gcd(x , y , z) = 1.

Also notice that a, b, and c are symmetric in this equation.

Theorems have been formulated for conditions on a, b, and c that
yield no integer solutions to the equation.
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Solutions Modulo 9

Theorem

If a, b, and c have the same sign and are all non-zero, there are no
solutions to ax2 + by2 + cz2 = 0.

Theorem

If a 6≡ 0(mod3), a ≡ b(mod3), and c ≡ 3, 6(mod9), then
ax2 + by2 + cz2 = 0 has no integer solution.
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Solutions Modulo 8

Theorem

If a ≡ 3, 6(mod9), a ≡ b(mod9), and c 6≡ 0(mod3), then
ax2 + by2 + cz2 = 0 has no integer solution.

Theorem

If a ≡ ±1(mod4) and a ≡ b ≡ c(mod4), then ax2 + by2 + cz2 = 0 has
no integer solutions.

Theorem

If a ≡ 2, 6(mod8), b + c 6≡ 0(mod8), a + b + c 6≡ 0(mod8), and a and b
are odd, then ax2 + by2 + cz2 = 0 has no integer solutions.
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The Simultaneous Equations Modulo 8

Theorem

Suppose D ≡ 2, 6(mod8) and d1, d2 6≡ 0, 4(mod8) and there is a solution
to the homogeneous space, then one of the following holds.

d1 ≡ d2 ≡ 1(mod8)

d1 ≡ 3D(mod4) and d2 ≡ 1(mod4)

d2 ≡ D(mod8)

d1 ≡ 3D + 1 and d2 ≡ 1(mod8)
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The Simultaneous Equations Modulo 16

Theorem

Suppose d1 and d2 are odd, D ≡ 1(mod8), and the equations have a
solution, then (d1, d2) is one of the following mod 8:

(1, 1)

(5, 1)

(3, 5)

(7, 5)
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Computer Program

A computer program was written in python that uses the elimination
theorems to eliminate points from the image of δE to gain an upper
bound on the size.

We can use these upper bounds on the size of the image to form an

upper bound on the rank of X
(D)
0 (24) for D = mp
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Results

The columns correspond to m while the rows correspond to p(mod24).

1 2 3 6 -1 -2 -3 -6
1 2 2 2 3 2 2 2 2
5 0 1 0 1 1 1 1 0
7 0 0 1 1 0 2 1 0

11 1 1 0 1 0 1 1 2
13 1 0 2 1 2* 0 1 0
17 1 1 0 1 1 1 0 0
19 0 2 0 1 1 0 1 2
23 1 1 1 1 1 1 1 2
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Examples of Arithmetic Progressions of Squares

For D = 11, the rank is 1 so we can find a non-torsion point (64, 720) on
the elliptic curve which yields the arithmetic progression:

n1 = (181632− 30240
√

11)2

n2 = (29568− 61920
√

11)2

n3 = (29568 + 61920
√

11)2

n4 = (181632 + 30240
√

11)2

For D = 13, the rank is 1 so we can find a non-torsion point (−25, 90)
on the elliptic curve which yields the arithmetic progression:

n1 = (−975− 4590
√

13)2

n2 = (16575 + 90
√

13)2

n3 = (16575− 90
√

13)2

n4 = (−975 + 4590
√

13)2
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Cubes in Arithmetic Progressions

Theorem

Denote
X0(36) : y2 = x3 − 27

X
(D)
0 (36) : y2 = x3 − 27D3

Then there exists a nonconstant / nontrivial progression of three cubes

over Q(
√
D), if and only if rank X

(D)
0 (36)(Q) > 0.
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An Arithmetic Progression to a Point on X0(36)

Given a 3-term arithmetic progression of three cubes (n1, n2, n3), define a
rational point (x : y : z):

x = −6( 3
√
n1 + 3

√
n2 + 3

√
n3)( 3
√
n1 − 2 3

√
n2 + 3

√
n3)

y = −27( 3
√
n1

2 − 3
√
n3)2)

z = ( 3
√
n1 − 2 3

√
n2 + 3

√
n3)2

This point lies on the curve y2z = x3 − 27z3.
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Solutions

Rational Points on y2z = x3 − 27z3

( 3
√
n1 : 3
√
n2 : 3
√
n3) (x : y : z)

(+1:+1:+1) (0:1:0)
(-1:0:+1) (3:0:1)

From this we can conclude that there are no nontrivial arithmetic
progressions of three rational cubes over Q. Additionally we observe that
X0(36) ∼= Z2 as an abelian group.
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A Point to an Arithmetic Progression

Given a nonzero rational number D, we say that

X
(D)
0 (36) : y2z = x3 − 27D3z3 has a nontrivial rational point (x : y : z).

We then have an arithmetic progression of three cubes (n1, n2, n3) over
Q(
√
D) defined by the following:

n1 = ((x − 3Dz)2 −
√
Dyz)3

n2 = ((x − 3Dz)(x + 6Dz))3

n3 = ((x − 3Dz)2 +
√
Dyz)3
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Example

Consider the case when D = 2, then the rational point

(x : y : z) = (10 : 28 : 1) is on the curve X
(D)
0 (36). In this case, we get

the following progression:

(n1, n2, n3) = ((4− 21
√

2)3, 223, (4 + 21
√

2)3)

.
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Lemma for Ranks

From Gonzalez-Jimenez’s paper we conclude that X0(36)(Q(
√
D))tors

and X0(36)(Q)tors are equal, when D 6= 3.

Mussmann, Archer, Martinez, Yuan, Liu Squares and Cubes in Progressions



Summary

We conclude that points that we find for progressions of three cubes are
not torsion points, and thus rankX0(36)(Q(

√
D)) > 0.
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Descent via Two Isogenies

Let E denote an elliptic curve over Q.
1) E (Q) ' E (Q)tors × Zr

2) E (D)(Q) ' E (D)(Q)tors × Zr(D)

3) E (Q(
√
D)) ' E (Q(

√
D)tors × ZR ,R = r + r(D)

X0(36)(Q) ' Z2 ⇒ r = 0. Thus, rank(X0(36)(Q(
√
D)) > 0

if and only if rank (X0(36)(D)(Q)) > 0. Yet,
X0(36)(D)(Q) : y2 = x3 − 27D3 = (x − 3D)(x2 + Dx + 9D2), the set of
the 2-torsion points of X0(36)(D) is not a subset of Q. Thus complete
2-descent is not useful in this case; we have to use descent via two
isogenies instead.
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Isogenies

However, for any quadratic twist X
(D)
0 (36)(Q), there is a rational point

(x : y : z) = (−3D : 0 : 1) in X0(36)[2]. Thus, we have the 2-isogeny
φ : X0(36)(D) → E (D)

(x : y : z) 7→ (
x2 − 3Dxz + 27D2z2

x − 3Dz
:
x2 − 6Dxz − 18D2z2

(x − 3Dz)2
y : z)

where E (D) : y2z = x3 − 135D2xz2 − 594D3z3. We have that

ker(φ) = X
(D)
0 (Q)tors .
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Isogenies

We may construct
φ’ : E (D) → X0(36)(D)

(x : y : z) 7→ (
1

4
[
x2 + 6Dxz − 27D2z2

x + 6Dz
] :

1

8
[
x2 + 12Dxz + 63D2z2

(x + 6Dz)2
y ] : z)

We have that ker(φ’) = {P = (−6D : 0 : 1),O}. By the property noted

earlier, we have that φ ◦ φ’ = 2X
(D)
0 (36)(Q). Note that

P = (−6D : 0 : 1) has order two, so we see that ker(φ) = X
(D)
0 (Q)[2]

and ker(φ’) = E (D)(Q)[2].
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Computing The Rank

X
(D)
0 (36)(Q) ' Z2 × Zr(D) ⇒ X

(D)
0 (36)(Q)

2X
(D)
0 (36)(Q)

' Z2 + Zr(D)+1, where

r(D) is the rank of X0(36)(D)(Q).
So, in order to compute r(D), we need to count the cosets in

X
(D)
0 (36)(Q)

2X
(D)
0 (36)(Q)

.
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Counting Cosets in
X

(D)
0 (36)(Q)

2X
(D)
0 (36)(Q)

We have | E (D)(Q)[φ]

φ(X0(36)(D)(Q)[2]
|| X0(36)(D)(Q)

2X0(36)(D)(Q)
| =

| E (D)(Q)

φ(X0(36)(D)(Q))
||X0(36)(D)(Q)

φ(E (D)(Q))
| = |coker(φ)||coker(φ’)|.
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Counting Cosets in
X

(D)
0 (36)(Q)

2X
(D)
0 (36)(Q)

Note that | E (D)(Q)[φ]

φ(X0(36)(D)(Q)[2]
| = 2, since |E (D)(Q)[φ]| = 2 and

φ(X0(36)(D)(Q)[2]) consists only of the point at infinity, so

| E (D)(Q)[φ]

φ(X0(36)(D)(Q)[2]
| =

2

1
= 2. Thus,

| E (D)(Q)[φ]

φ(X0(36)(D)(Q)[2]
|| X0(36)(D)(Q)

2X0(36)(D)(Q)
| =

| E (D)(Q)

φ(X0(36)(D)(Q))
||X0(36)(D)(Q)

φ(E (D)(Q))
| ⇒

2| X0(36)(D)(Q)

2X0(36)(D)(Q)
| = | E (D)(Q)

φ(X0(36)(D)(Q))
||X0(36)(D)(Q)

φ(E (D)(Q))
| ⇒

| X0(36)(D)(Q)

2X0(36)(D)(Q)
| =

1

2
| E (D)(Q)

φ(X0(36)(D)(Q))
||X0(36)(D)(Q)

φ(E (D)(Q))
| ⇒

| X0(36)(D)(Q)

2X0(36)(D)(Q)
| =
|coker(φ)||coker(φ’)|

2
.
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Computing Cokernels

To avoid working directly with coker(φ) and coker(φ’), whose structure
may be difficult to work with, we define the group homomorphism

δ :
E (D)(Q)

φ(X0(36)(D)(Q))
→ Q×

(Q×)2

(x , y) 7→ x + 6D mod (Q×)2, if x + 6D 6= 0
O 7→ 1 mod (Q×)2, if x + 6D = 0

(δ maps the elements of
E (D)(Q)

φ(X0(36)(D)(Q))
to their square-free parts)

and we define the group homomorphism

δ’ :
X0(36)(D)(Q)

φ’(E (D)(Q))
→ Q×

(Q×)2

(x , y) 7→ x − 3D mod (Q×)2

(δ’ maps the elements of
X0(36)(D)(Q)

φ’(E (D)(Q))
to their square-free parts.)
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Computing Cokernels

Both δ : coker(φ)→ Q×

(Q×)2
and

δ’ : coker(φ’)→ Q×

(Q×)2
are injective group homomorphisms

2(r+1) =
|Im(δ)||Im(δ’)|

2
.

Let S =
{

k| k prime, k|27D2
}

. Notice that Im(δ) is a subset of Q(S , 2).
Hence, |Im(δ)| ≤ |Q(S , 2)| Likewise, Im(δ’) is a subset of Q(S , 2). Hence,
|Im(δ’)| ≤ |Q(S , 2)|.
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Homogeneous Space

To compute |Im(δ)|, we may consider values of d in
Q×

(Q×)2
such that the

equation Dd : v2 = d − 18Du2 − 27D2

d
u4 has a rational solution (u, v).

To compute |Im(δ’)|, we may consider values of d ’ in
Q×

(Q×)2
such that

the equation

Dd ’ : w2 = d ’ + 9Dz2 +
27D2

d ’
)z4

has a rational solution (w , z).
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Motivation

There is a motivation for eliminating points from the image of δ and
δ′ for a given D = mp.

If we can eliminate points from the image, we can find an upper
bound on the size of the image, and thus an upper bound on the
rank.
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Eliminating Points from Im(δ)

In order to show a point d is not in the image δ, it will suffice to show
that there are no rational solutions to:

v ′2 = d − 18Du′2 − 27D2

d
u′4

If we let v ′ =
v

z
and u′ =

u

z
such that gcd(u, v , z) = 1, and multiply

through by z4, we get:

v2z2 = dz4 − 18Du2z2 − 27D2

d
u4

It will suffice to show there are no integer solutions to this equation to
eliminate a point from the image.
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Eliminating Points from Im(δ′)

In order to show a point d is not in the image of δ′, it will suffice to show
that there are no rational solutions to:

v2 = d + 9Du2 +
27D2

d
u4

Let v ′ =
v

z
and u′ =

u

z
such that gcd(u, v , z) = 1, and multiply through

by z4.

v2z2 = dz4 − 18Du2z2 − 27D2

d
u4

It will suffice to show there are no integer solutions to this equation to
eliminate a point from the image.
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Structures of the Images

We know that 1 and -3 are in the image of δ and that 1 and 3 are in
the image of δ′

Since the images are multiplicative groups, if we know a point x is
not in the image, the product of x and a point from the image is not
in the image.
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Checking for Real Solutions

If there are no real solutions to the equations. Then there will be no
rational solutions.

Theorem

If d < 0 then there is no rational solution to v2 = d + 9Du2 +
27D2

d
u4
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The Legendre Symbol

Let us denote the Legendre symbol as ( a
b )

Let ( a
b ) = 1 if there exists an integer x such that x2 ≡ a(modb)

Otherwise, let ( a
b ) = −1
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Checking for solutions Modulo p

Theorem

Let D = mp and suppose p | d. If (frac3p) = −1 then there are no

solutions to v2z2 = dz4 − 18Du2z2 − 27D2

d
u4

Theorem

Let D = mp and suppose p | d. If (−3p ) = −1 then there are no solutions

to v2z2 = dz4 + 9Du2z2 +
27D2

d
u4

Theorem

Let D = mp and suppose p - d. If ( d
p ) = −1 and (−3dp ) = −1 then there

are no solutions to v2z2 = dz4 − 18Du2z2 − 27D2

d
u4
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Checking for Solutions Modulo p

Theorem

Suppose 3 - d and 3 | D. If d ≡ −1 (mod 3) then there is no integer

solution to either v2z2 = dz4 − 18Du2z2 − 27D2

d
u4 or

v2z2 = dz4 + 9Du2z2 +
27D2

d
u4.
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Checking for solutions Modulo 3

Theorem

Suppose 3 - d and 3 - D. If d ≡ −1 (mod 3) then there is no integer

solution to either v2z2 = dz4 − 18Du2z2 − 27D2

d
u4 or

v2z2 = dz4 + 9Du2z2 +
27D2

d
u4.
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Checking for solutions Modulo 8

Theorem

Suppose 2 | d which implies 2 | D. Let d = 2d̄ and D = 2D̄. Then

v2z2 = dz4 − 18Du2z2 − 27D2

d
u4 has a solution only if

d̄z4 − 18D̄ − 27D̄2

d̄
≡ 0 or 2 (mod 8).

Theorem

Suppose 2 | d which implies 2 | D. Let d = 2d̄ and D = 2D̄. Then

v2z2 = dz4 + 9Du2z2 +
27D2

d
u4 has a solution only if

d̄z4 + 9D̄ +
27D̄2

d̄
≡ 0 or 2 (mod 8).
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Checking for solutions Modulo 8

Theorem

Suppose 2 - d but 2 | D. Let D = 2D̄. Then

v2z2 = dz4 + 9Du2z2 +
27D2

d
u4 has a solution only if one of the

following holds.

d + 2 ∗ 9D̄ + 4 ∗ 27D̄2

d
≡ 1 (mod 8)

d ≡ 1 (mod 8)

4 ∗ d + 2 ∗ 9D̄ +
27D̄2

d
≡ 1 (mod 8)

27D̄2

d
≡ 1 (mod 8)
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Computer Program

A computer program was written in python that uses the elimination
theorems to eliminate points from the image of δ and δ′ to gain an
upper bound on the size.

We can use these upper bounds on the size of the images to form an

upper bound on the rank of X
(D)
0 (36) for D = mp
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Results

The columns correspond to m while the rows correspond to p(mod24).

1 2 3 6 -1 -2 -3 -6
1 2 3 2 2 2 2 2 3
5 0 1 0 0 0 0 0 1
7 1 1 1 0 1 0 1 1

11 1 1 1 2 1 2 1 1
13 2 1 2 2 2 2 2 1
17 0 1 0 0 0 0 0 1
19 1 1 1 2 1 2 1 1
23 1 1 1 2 1 2 1 1
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Examples of Arithmetic Progressions of Cubes

For D = 7 and D = 11, the rank is 1 and thus we can find a points on
the elliptic curves.
For D = 7, we can find the non-torsion point ( 1785

4 , 754118 ) on the elliptic
curve which yields the arithmetic progression:

n1 = (11573604− 1809864
√

7)3

n2 = (13288212)3

n3 = (11573604 + 1809864
√

7)3

For D = 11, we can find the non-torsion point ( 55977
1369 ,

9121140
50653 ) on the

elliptic curve which yields the arithmetic progression:

n1 = (159680160000− 1386039313260
√

11)3

n2 = (2163533101200)3

n3 = (159680160000 + 1386039313260
√

11)
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